model update
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ widget:
|
|
21 |
- text: "<hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다."
|
22 |
example_title: "Question Generation Example 3"
|
23 |
model-index:
|
24 |
-
- name: lmqg/mt5-small-koquad
|
25 |
results:
|
26 |
- task:
|
27 |
name: Text2text Generation
|
@@ -66,7 +66,7 @@ model-index:
|
|
66 |
value: 85.23
|
67 |
---
|
68 |
|
69 |
-
# Model Card of `lmqg/mt5-small-koquad`
|
70 |
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
71 |
|
72 |
|
@@ -84,7 +84,7 @@ This model is fine-tuned version of [google/mt5-small](https://huggingface.co/go
|
|
84 |
from lmqg import TransformersQG
|
85 |
|
86 |
# initialize model
|
87 |
-
model = TransformersQG(language="ko", model="lmqg/mt5-small-koquad")
|
88 |
|
89 |
# model prediction
|
90 |
questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군")
|
@@ -95,7 +95,7 @@ questions = model.generate_q(list_context="1990년 영화 《 남부군 》에
|
|
95 |
```python
|
96 |
from transformers import pipeline
|
97 |
|
98 |
-
pipe = pipeline("text2text-generation", "lmqg/mt5-small-koquad")
|
99 |
output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
|
100 |
|
101 |
```
|
@@ -103,7 +103,7 @@ output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영
|
|
103 |
## Evaluation
|
104 |
|
105 |
|
106 |
-
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json)
|
107 |
|
108 |
| | Score | Type | Dataset |
|
109 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
@@ -117,7 +117,7 @@ output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영
|
|
117 |
| ROUGE_L | 25.64 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
118 |
|
119 |
|
120 |
-
- ***Metric (Question & Answer Generation)***: QAG metrics are computed with *the gold answer* and generated question on it for this model, as the model cannot provide an answer. [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_koquad.default.json)
|
121 |
|
122 |
| | Score | Type | Dataset |
|
123 |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
@@ -149,7 +149,7 @@ The following hyperparameters were used during fine-tuning:
|
|
149 |
- gradient_accumulation_steps: 4
|
150 |
- label_smoothing: 0.15
|
151 |
|
152 |
-
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-koquad/raw/main/trainer_config.json).
|
153 |
|
154 |
## Citation
|
155 |
```
|
|
|
21 |
- text: "<hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다."
|
22 |
example_title: "Question Generation Example 3"
|
23 |
model-index:
|
24 |
+
- name: lmqg/mt5-small-koquad-qg
|
25 |
results:
|
26 |
- task:
|
27 |
name: Text2text Generation
|
|
|
66 |
value: 85.23
|
67 |
---
|
68 |
|
69 |
+
# Model Card of `lmqg/mt5-small-koquad-qg`
|
70 |
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
71 |
|
72 |
|
|
|
84 |
from lmqg import TransformersQG
|
85 |
|
86 |
# initialize model
|
87 |
+
model = TransformersQG(language="ko", model="lmqg/mt5-small-koquad-qg")
|
88 |
|
89 |
# model prediction
|
90 |
questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군")
|
|
|
95 |
```python
|
96 |
from transformers import pipeline
|
97 |
|
98 |
+
pipe = pipeline("text2text-generation", "lmqg/mt5-small-koquad-qg")
|
99 |
output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
|
100 |
|
101 |
```
|
|
|
103 |
## Evaluation
|
104 |
|
105 |
|
106 |
+
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json)
|
107 |
|
108 |
| | Score | Type | Dataset |
|
109 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
|
|
117 |
| ROUGE_L | 25.64 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
118 |
|
119 |
|
120 |
+
- ***Metric (Question & Answer Generation)***: QAG metrics are computed with *the gold answer* and generated question on it for this model, as the model cannot provide an answer. [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_koquad.default.json)
|
121 |
|
122 |
| | Score | Type | Dataset |
|
123 |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
|
|
149 |
- gradient_accumulation_steps: 4
|
150 |
- label_smoothing: 0.15
|
151 |
|
152 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-koquad-qg/raw/main/trainer_config.json).
|
153 |
|
154 |
## Citation
|
155 |
```
|