Safetensors
English
qwen2_vl
luodian commited on
Commit
f7e8775
·
verified ·
1 Parent(s): fc088d7

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. added_tokens.json +16 -0
  3. chat_template.json +3 -0
  4. checkpoint-241/added_tokens.json +16 -0
  5. checkpoint-241/chat_template.json +3 -0
  6. checkpoint-241/config.json +48 -0
  7. checkpoint-241/generation_config.json +15 -0
  8. checkpoint-241/global_step241/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-241/global_step241/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-241/global_step241/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-241/global_step241/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-241/global_step241/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-241/global_step241/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  14. checkpoint-241/global_step241/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  15. checkpoint-241/global_step241/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  16. checkpoint-241/global_step241/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-241/global_step241/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-241/global_step241/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-241/global_step241/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-241/global_step241/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  21. checkpoint-241/global_step241/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  22. checkpoint-241/global_step241/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  23. checkpoint-241/global_step241/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  24. checkpoint-241/latest +1 -0
  25. checkpoint-241/merges.txt +0 -0
  26. checkpoint-241/model-00001-of-00004.safetensors +3 -0
  27. checkpoint-241/model-00002-of-00004.safetensors +3 -0
  28. checkpoint-241/model-00003-of-00004.safetensors +3 -0
  29. checkpoint-241/model-00004-of-00004.safetensors +3 -0
  30. checkpoint-241/model.safetensors.index.json +737 -0
  31. checkpoint-241/preprocessor_config.json +29 -0
  32. checkpoint-241/rng_state_0.pth +3 -0
  33. checkpoint-241/rng_state_1.pth +3 -0
  34. checkpoint-241/rng_state_2.pth +3 -0
  35. checkpoint-241/rng_state_3.pth +3 -0
  36. checkpoint-241/rng_state_4.pth +3 -0
  37. checkpoint-241/rng_state_5.pth +3 -0
  38. checkpoint-241/rng_state_6.pth +3 -0
  39. checkpoint-241/rng_state_7.pth +3 -0
  40. checkpoint-241/scheduler.pt +3 -0
  41. checkpoint-241/special_tokens_map.json +31 -0
  42. checkpoint-241/tokenizer.json +3 -0
  43. checkpoint-241/tokenizer_config.json +145 -0
  44. checkpoint-241/trainer_state.json +3166 -0
  45. checkpoint-241/training_args.bin +3 -0
  46. checkpoint-241/vocab.json +0 -0
  47. checkpoint-241/zero_to_fp32.py +674 -0
  48. config.json +48 -0
  49. generation_config.json +15 -0
  50. merges.txt +0 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-241/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-241/added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
checkpoint-241/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-241/config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2-VL-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 18944,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_vl",
17
+ "num_attention_heads": 28,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 4,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.49.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "in_chans": 3,
40
+ "model_type": "qwen2_vl",
41
+ "spatial_patch_size": 14,
42
+ "torch_dtype": "float32"
43
+ },
44
+ "vision_end_token_id": 151653,
45
+ "vision_start_token_id": 151652,
46
+ "vision_token_id": 151654,
47
+ "vocab_size": 152064
48
+ }
checkpoint-241/generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "temperature": 0.01,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.49.0.dev0",
14
+ "use_cache": false
15
+ }
checkpoint-241/global_step241/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6175182be3db7670a743495676010167ea180fb95f41098b4629bb54af79eeb
3
+ size 3109271152
checkpoint-241/global_step241/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f52beb8430287d1bd08d036aa74020e4b1aa7d823653a125094382c863ecd24c
3
+ size 3109271152
checkpoint-241/global_step241/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:581a24ee5a1cc0a6361123ec5e96f4d2f597626ee4086a1c7f04cf5d4297af98
3
+ size 3109271152
checkpoint-241/global_step241/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b333ae27b9e7075a0e1fe82a9a868b5de6c3167736b8ff5809418567d7cbd72
3
+ size 3109271152
checkpoint-241/global_step241/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23dd9eae7b64c1da31902c95398f427cef0797f13e067b433e4f0c38c89bc3cb
3
+ size 3109271152
checkpoint-241/global_step241/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5737fd8145a3ce07926ce288d370f71f16b4da5080394217687d46f93a7bd31
3
+ size 3109271152
checkpoint-241/global_step241/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:412441d786bf76fd1db14eb8621b6498816f059d0e6eeba9652540371f4f4490
3
+ size 3109271152
checkpoint-241/global_step241/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86d0e08704784160648ecc3c23f84bbd436cd20a23c4c34d4ff3d2a8e1deccb9
3
+ size 3109271152
checkpoint-241/global_step241/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84d1d91fe2b33b0971ca6c13e8d5495c3db3593617f5be3cb6cda7d32a624231
3
+ size 345056
checkpoint-241/global_step241/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35fd53e6b9cc510ee72f496b33131276b20ef67270d958eaa5e3a5210f412520
3
+ size 345056
checkpoint-241/global_step241/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acdb3da4b70fcce7404470e120ad0d4f44b39c3ba2e31b3ca75c62edebd5ef32
3
+ size 345056
checkpoint-241/global_step241/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16effa550ccb979230cf8966b46c566412938839228f102552b375da75f2d703
3
+ size 345056
checkpoint-241/global_step241/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d75f9a3138f2cc46ca3e0c7e76348590882a325908ef095b2c3ea67ecfbdf1a6
3
+ size 345056
checkpoint-241/global_step241/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dec730d4aa3558036407592b675673a4443fcc0936fc8a34a9246797b27e4c5
3
+ size 345056
checkpoint-241/global_step241/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9dd69758c3b17c6f1198f6313d770ae942f8343205511f18e3eee510e793089
3
+ size 345056
checkpoint-241/global_step241/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a81293956ad1a4d39670141ed1758953d10c3387978343a4a14fabeae52bde9
3
+ size 345056
checkpoint-241/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step241
checkpoint-241/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-241/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18a2c8cf820035dc21186d653c096ca29364d2b91ce00a1260c5a7f53b75f4b1
3
+ size 4966659944
checkpoint-241/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c5862c721a0d556f5ba37db50aeed7a83228601144d832958b1c86fea9dadd3
3
+ size 4991495816
checkpoint-241/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ee35930f0e906c339f73759a2544adc0abb435ca8c11685da0c615c2d355e95
3
+ size 4932751040
checkpoint-241/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4db9563b9e5a1229fd773d02c4a06700355891f55a2038f8febd0e72d3347ea
3
+ size 1691924384
checkpoint-241/model.safetensors.index.json ADDED
@@ -0,0 +1,737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16582751232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors",
345
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
346
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
347
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
348
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
349
+ "visual.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
350
+ "visual.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
351
+ "visual.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
352
+ "visual.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
353
+ "visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
354
+ "visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
355
+ "visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
356
+ "visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
357
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
358
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
359
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
360
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
361
+ "visual.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
362
+ "visual.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
363
+ "visual.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
364
+ "visual.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
365
+ "visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
366
+ "visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
367
+ "visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
368
+ "visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
369
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
370
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
371
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
+ "visual.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
374
+ "visual.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
375
+ "visual.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
376
+ "visual.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
377
+ "visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
378
+ "visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
379
+ "visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
380
+ "visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
381
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
382
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
383
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
384
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
385
+ "visual.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
386
+ "visual.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
387
+ "visual.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
388
+ "visual.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
389
+ "visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
390
+ "visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
391
+ "visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
392
+ "visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
393
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
394
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
395
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
396
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
397
+ "visual.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
398
+ "visual.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
399
+ "visual.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
400
+ "visual.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
401
+ "visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
402
+ "visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
403
+ "visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
404
+ "visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
405
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
406
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
407
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
408
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
409
+ "visual.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
410
+ "visual.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
411
+ "visual.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
412
+ "visual.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
413
+ "visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
414
+ "visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
415
+ "visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
416
+ "visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
417
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
418
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
419
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
420
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
421
+ "visual.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
422
+ "visual.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
423
+ "visual.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
424
+ "visual.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
425
+ "visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
426
+ "visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
427
+ "visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
428
+ "visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
429
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
430
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
431
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
432
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
433
+ "visual.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
434
+ "visual.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
435
+ "visual.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
436
+ "visual.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
437
+ "visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
438
+ "visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
439
+ "visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
440
+ "visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
441
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
442
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
443
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
444
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
445
+ "visual.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
446
+ "visual.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
447
+ "visual.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
448
+ "visual.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
449
+ "visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
450
+ "visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
451
+ "visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
452
+ "visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
453
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
454
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
455
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
+ "visual.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
458
+ "visual.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
459
+ "visual.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
460
+ "visual.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
461
+ "visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
462
+ "visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
463
+ "visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
464
+ "visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
465
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
466
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
467
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
468
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
469
+ "visual.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
470
+ "visual.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
471
+ "visual.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
472
+ "visual.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
473
+ "visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
474
+ "visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
475
+ "visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
476
+ "visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
477
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
478
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
479
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
480
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
481
+ "visual.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
482
+ "visual.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
483
+ "visual.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
484
+ "visual.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
485
+ "visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
486
+ "visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
487
+ "visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
488
+ "visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
489
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
490
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
491
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
492
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
493
+ "visual.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
494
+ "visual.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
495
+ "visual.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
496
+ "visual.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
497
+ "visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
498
+ "visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
499
+ "visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
500
+ "visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
501
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
502
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
503
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
504
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
505
+ "visual.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
506
+ "visual.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
507
+ "visual.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
508
+ "visual.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
509
+ "visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
510
+ "visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
511
+ "visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
512
+ "visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
513
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
514
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
515
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
516
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
517
+ "visual.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
518
+ "visual.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
519
+ "visual.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
520
+ "visual.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
521
+ "visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
522
+ "visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
523
+ "visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
524
+ "visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
525
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
526
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
527
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
528
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
529
+ "visual.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
530
+ "visual.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
531
+ "visual.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
532
+ "visual.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
533
+ "visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
534
+ "visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
535
+ "visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
536
+ "visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
537
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
538
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
539
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
+ "visual.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
542
+ "visual.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
543
+ "visual.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
544
+ "visual.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
545
+ "visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
546
+ "visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
547
+ "visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
548
+ "visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
549
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
550
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
551
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
552
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
553
+ "visual.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
554
+ "visual.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
555
+ "visual.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
556
+ "visual.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
557
+ "visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
558
+ "visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
559
+ "visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
560
+ "visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
561
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
562
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
563
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
564
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
565
+ "visual.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
566
+ "visual.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
567
+ "visual.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
568
+ "visual.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
569
+ "visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
570
+ "visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
571
+ "visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
572
+ "visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
573
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
574
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
575
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
576
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
577
+ "visual.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
578
+ "visual.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
579
+ "visual.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
580
+ "visual.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
581
+ "visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
582
+ "visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
583
+ "visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
584
+ "visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
585
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
586
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
587
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
588
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
589
+ "visual.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
590
+ "visual.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
591
+ "visual.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
592
+ "visual.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
593
+ "visual.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
594
+ "visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
595
+ "visual.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
596
+ "visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
597
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
598
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
599
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
600
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
601
+ "visual.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
602
+ "visual.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
603
+ "visual.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
604
+ "visual.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
605
+ "visual.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
606
+ "visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
607
+ "visual.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
608
+ "visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
609
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
610
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
611
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
612
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
613
+ "visual.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
614
+ "visual.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
615
+ "visual.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
616
+ "visual.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
617
+ "visual.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
618
+ "visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
619
+ "visual.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
620
+ "visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
621
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
622
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
623
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
624
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
625
+ "visual.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
626
+ "visual.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
627
+ "visual.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
628
+ "visual.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
629
+ "visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
630
+ "visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
631
+ "visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
632
+ "visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
633
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
634
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
635
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
636
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
637
+ "visual.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
638
+ "visual.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
639
+ "visual.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
640
+ "visual.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
641
+ "visual.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
642
+ "visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
643
+ "visual.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
644
+ "visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
645
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
646
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
647
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
648
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
649
+ "visual.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
650
+ "visual.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
651
+ "visual.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
652
+ "visual.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
653
+ "visual.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
654
+ "visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
655
+ "visual.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
656
+ "visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
657
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
658
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
659
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
660
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
661
+ "visual.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
662
+ "visual.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
663
+ "visual.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
664
+ "visual.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
665
+ "visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
666
+ "visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
667
+ "visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
668
+ "visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
669
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
670
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
671
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
672
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
673
+ "visual.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
674
+ "visual.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
675
+ "visual.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
676
+ "visual.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
677
+ "visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
678
+ "visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
679
+ "visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
680
+ "visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
681
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
682
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
683
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
684
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
685
+ "visual.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
686
+ "visual.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
687
+ "visual.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
688
+ "visual.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
689
+ "visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
690
+ "visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
691
+ "visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
692
+ "visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
693
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
694
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
695
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
696
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
697
+ "visual.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
698
+ "visual.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
699
+ "visual.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
700
+ "visual.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
701
+ "visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
702
+ "visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
703
+ "visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
704
+ "visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
705
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
706
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
707
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
708
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
709
+ "visual.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
710
+ "visual.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
711
+ "visual.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
712
+ "visual.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
713
+ "visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
714
+ "visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
715
+ "visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
716
+ "visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
717
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
718
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
719
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
720
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
721
+ "visual.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
722
+ "visual.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
723
+ "visual.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
724
+ "visual.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
725
+ "visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
726
+ "visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
727
+ "visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
728
+ "visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
729
+ "visual.merger.ln_q.bias": "model-00001-of-00004.safetensors",
730
+ "visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
731
+ "visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
732
+ "visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
733
+ "visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
734
+ "visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
735
+ "visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
736
+ }
737
+ }
checkpoint-241/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 2359296,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
checkpoint-241/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d403e954abc89e96308d8637d290658695b5e101f292b3e6dd7e3c2752b9424
3
+ size 15984
checkpoint-241/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eed9c892f40db2d9f0c11b64a1f2b812e420a5b54706735c68df948a4eb8a22
3
+ size 15984
checkpoint-241/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84586131ba6d790bc95a762a9807c4782575037ebb04e4e97b5b158f035757f9
3
+ size 15984
checkpoint-241/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:844e99f43dd145609e9beb94b89ca061ae6d08ca575716cc656424a6ed8c3fdf
3
+ size 15984
checkpoint-241/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b683dc40255503d6ae82080494d4e0c57d3220af114ee73eae892ee98c912a70
3
+ size 15984
checkpoint-241/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed16a9e8519510ad538724e07bf79f634447334198c717f71ade7f6da0e5b3be
3
+ size 15984
checkpoint-241/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5abc637c74b84025333f13d2156dd89ec3b470f5f3e9f4df457f9f9f57f294ae
3
+ size 15984
checkpoint-241/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02abfe3f8324ef502df71ba1ca3e755af045337592cbbd52990ba26e6b118de6
3
+ size 15984
checkpoint-241/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39728186492e883fc14019879a5303128fbcf023c6d47c47abd9636d8f85c1d3
3
+ size 1064
checkpoint-241/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-241/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
3
+ size 11420538
checkpoint-241/tokenizer_config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "model_max_length": 32768,
139
+ "pad_token": "<|endoftext|>",
140
+ "padding_side": "left",
141
+ "processor_class": "Qwen2VLProcessor",
142
+ "split_special_tokens": false,
143
+ "tokenizer_class": "Qwen2Tokenizer",
144
+ "unk_token": null
145
+ }
checkpoint-241/trainer_state.json ADDED
@@ -0,0 +1,3166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 241,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 137.0703125,
13
+ "epoch": 0.004149377593360996,
14
+ "grad_norm": 39.23092968312426,
15
+ "kl": 0.0,
16
+ "learning_rate": 9.95850622406639e-07,
17
+ "loss": -0.0,
18
+ "reward": 0.3203125,
19
+ "reward_std": 0.3337579667568207,
20
+ "rewards/accuracy_reward": 0.1953125,
21
+ "rewards/format_reward": 0.125,
22
+ "step": 1
23
+ },
24
+ {
25
+ "completion_length": 132.765625,
26
+ "epoch": 0.008298755186721992,
27
+ "grad_norm": 22.785772433442506,
28
+ "kl": 0.0020294189453125,
29
+ "learning_rate": 9.91701244813278e-07,
30
+ "loss": 0.0001,
31
+ "reward": 0.38671875,
32
+ "reward_std": 0.3885350227355957,
33
+ "rewards/accuracy_reward": 0.20703125,
34
+ "rewards/format_reward": 0.1796875,
35
+ "step": 2
36
+ },
37
+ {
38
+ "completion_length": 150.3828125,
39
+ "epoch": 0.012448132780082987,
40
+ "grad_norm": 46.167032159328485,
41
+ "kl": 0.0030059814453125,
42
+ "learning_rate": 9.87551867219917e-07,
43
+ "loss": 0.0001,
44
+ "reward": 0.38671875,
45
+ "reward_std": 0.4264633357524872,
46
+ "rewards/accuracy_reward": 0.109375,
47
+ "rewards/format_reward": 0.27734375,
48
+ "step": 3
49
+ },
50
+ {
51
+ "completion_length": 132.20703125,
52
+ "epoch": 0.016597510373443983,
53
+ "grad_norm": 30.388246262465664,
54
+ "kl": 0.00701904296875,
55
+ "learning_rate": 9.83402489626556e-07,
56
+ "loss": 0.0003,
57
+ "reward": 0.62890625,
58
+ "reward_std": 0.568841814994812,
59
+ "rewards/accuracy_reward": 0.23046875,
60
+ "rewards/format_reward": 0.3984375,
61
+ "step": 4
62
+ },
63
+ {
64
+ "completion_length": 134.53515625,
65
+ "epoch": 0.02074688796680498,
66
+ "grad_norm": 9.020739859426017,
67
+ "kl": 0.0101318359375,
68
+ "learning_rate": 9.792531120331948e-07,
69
+ "loss": 0.0004,
70
+ "reward": 0.734375,
71
+ "reward_std": 0.49411386251449585,
72
+ "rewards/accuracy_reward": 0.1640625,
73
+ "rewards/format_reward": 0.5703125,
74
+ "step": 5
75
+ },
76
+ {
77
+ "completion_length": 144.62890625,
78
+ "epoch": 0.024896265560165973,
79
+ "grad_norm": 15.42225433374535,
80
+ "kl": 0.015869140625,
81
+ "learning_rate": 9.75103734439834e-07,
82
+ "loss": 0.0006,
83
+ "reward": 0.88671875,
84
+ "reward_std": 0.4697031080722809,
85
+ "rewards/accuracy_reward": 0.2109375,
86
+ "rewards/format_reward": 0.67578125,
87
+ "step": 6
88
+ },
89
+ {
90
+ "completion_length": 141.0390625,
91
+ "epoch": 0.029045643153526972,
92
+ "grad_norm": 40.46833833863793,
93
+ "kl": 0.01409912109375,
94
+ "learning_rate": 9.70954356846473e-07,
95
+ "loss": 0.0006,
96
+ "reward": 0.90625,
97
+ "reward_std": 0.5133033990859985,
98
+ "rewards/accuracy_reward": 0.23828125,
99
+ "rewards/format_reward": 0.66796875,
100
+ "step": 7
101
+ },
102
+ {
103
+ "completion_length": 132.3828125,
104
+ "epoch": 0.03319502074688797,
105
+ "grad_norm": 11.62408553819753,
106
+ "kl": 0.017578125,
107
+ "learning_rate": 9.66804979253112e-07,
108
+ "loss": 0.0007,
109
+ "reward": 0.9140625,
110
+ "reward_std": 0.4123005270957947,
111
+ "rewards/accuracy_reward": 0.22265625,
112
+ "rewards/format_reward": 0.69140625,
113
+ "step": 8
114
+ },
115
+ {
116
+ "completion_length": 127.2265625,
117
+ "epoch": 0.03734439834024896,
118
+ "grad_norm": 18.357863148161705,
119
+ "kl": 0.0189208984375,
120
+ "learning_rate": 9.62655601659751e-07,
121
+ "loss": 0.0008,
122
+ "reward": 0.90625,
123
+ "reward_std": 0.3882066607475281,
124
+ "rewards/accuracy_reward": 0.125,
125
+ "rewards/format_reward": 0.78125,
126
+ "step": 9
127
+ },
128
+ {
129
+ "completion_length": 123.10546875,
130
+ "epoch": 0.04149377593360996,
131
+ "grad_norm": 31.541022539135124,
132
+ "kl": 0.0218505859375,
133
+ "learning_rate": 9.5850622406639e-07,
134
+ "loss": 0.0009,
135
+ "reward": 1.08984375,
136
+ "reward_std": 0.339883029460907,
137
+ "rewards/accuracy_reward": 0.234375,
138
+ "rewards/format_reward": 0.85546875,
139
+ "step": 10
140
+ },
141
+ {
142
+ "completion_length": 106.26171875,
143
+ "epoch": 0.04564315352697095,
144
+ "grad_norm": 17.562568127530522,
145
+ "kl": 0.031494140625,
146
+ "learning_rate": 9.54356846473029e-07,
147
+ "loss": 0.0013,
148
+ "reward": 1.0546875,
149
+ "reward_std": 0.221227765083313,
150
+ "rewards/accuracy_reward": 0.109375,
151
+ "rewards/format_reward": 0.9453125,
152
+ "step": 11
153
+ },
154
+ {
155
+ "completion_length": 103.5546875,
156
+ "epoch": 0.04979253112033195,
157
+ "grad_norm": 9.276928026993419,
158
+ "kl": 0.031982421875,
159
+ "learning_rate": 9.50207468879668e-07,
160
+ "loss": 0.0013,
161
+ "reward": 1.09375,
162
+ "reward_std": 0.2309482991695404,
163
+ "rewards/accuracy_reward": 0.13671875,
164
+ "rewards/format_reward": 0.95703125,
165
+ "step": 12
166
+ },
167
+ {
168
+ "completion_length": 108.484375,
169
+ "epoch": 0.05394190871369295,
170
+ "grad_norm": 5.118367832344082,
171
+ "kl": 0.033447265625,
172
+ "learning_rate": 9.460580912863069e-07,
173
+ "loss": 0.0013,
174
+ "reward": 1.2421875,
175
+ "reward_std": 0.3411697447299957,
176
+ "rewards/accuracy_reward": 0.27734375,
177
+ "rewards/format_reward": 0.96484375,
178
+ "step": 13
179
+ },
180
+ {
181
+ "completion_length": 116.8515625,
182
+ "epoch": 0.058091286307053944,
183
+ "grad_norm": 12.049394415121267,
184
+ "kl": 0.03857421875,
185
+ "learning_rate": 9.41908713692946e-07,
186
+ "loss": 0.0015,
187
+ "reward": 1.1328125,
188
+ "reward_std": 0.21509549021720886,
189
+ "rewards/accuracy_reward": 0.18359375,
190
+ "rewards/format_reward": 0.94921875,
191
+ "step": 14
192
+ },
193
+ {
194
+ "completion_length": 107.8671875,
195
+ "epoch": 0.06224066390041494,
196
+ "grad_norm": 13.769852298124052,
197
+ "kl": 0.036376953125,
198
+ "learning_rate": 9.377593360995851e-07,
199
+ "loss": 0.0015,
200
+ "reward": 1.0390625,
201
+ "reward_std": 0.2277078926563263,
202
+ "rewards/accuracy_reward": 0.09765625,
203
+ "rewards/format_reward": 0.94140625,
204
+ "step": 15
205
+ },
206
+ {
207
+ "completion_length": 111.6171875,
208
+ "epoch": 0.06639004149377593,
209
+ "grad_norm": 45.043975182978954,
210
+ "kl": 0.359375,
211
+ "learning_rate": 9.33609958506224e-07,
212
+ "loss": 0.0143,
213
+ "reward": 1.0234375,
214
+ "reward_std": 0.263639897108078,
215
+ "rewards/accuracy_reward": 0.08984375,
216
+ "rewards/format_reward": 0.93359375,
217
+ "step": 16
218
+ },
219
+ {
220
+ "completion_length": 103.00390625,
221
+ "epoch": 0.07053941908713693,
222
+ "grad_norm": 3.010533753288046,
223
+ "kl": 0.04443359375,
224
+ "learning_rate": 9.294605809128631e-07,
225
+ "loss": 0.0018,
226
+ "reward": 1.08203125,
227
+ "reward_std": 0.23664388060569763,
228
+ "rewards/accuracy_reward": 0.109375,
229
+ "rewards/format_reward": 0.97265625,
230
+ "step": 17
231
+ },
232
+ {
233
+ "completion_length": 106.34375,
234
+ "epoch": 0.07468879668049792,
235
+ "grad_norm": 7.87354723018806,
236
+ "kl": 0.06884765625,
237
+ "learning_rate": 9.25311203319502e-07,
238
+ "loss": 0.0028,
239
+ "reward": 1.1953125,
240
+ "reward_std": 0.2938428819179535,
241
+ "rewards/accuracy_reward": 0.2109375,
242
+ "rewards/format_reward": 0.984375,
243
+ "step": 18
244
+ },
245
+ {
246
+ "completion_length": 94.46484375,
247
+ "epoch": 0.07883817427385892,
248
+ "grad_norm": 10.041019792600245,
249
+ "kl": 0.055419921875,
250
+ "learning_rate": 9.21161825726141e-07,
251
+ "loss": 0.0022,
252
+ "reward": 1.21875,
253
+ "reward_std": 0.2210792601108551,
254
+ "rewards/accuracy_reward": 0.2421875,
255
+ "rewards/format_reward": 0.9765625,
256
+ "step": 19
257
+ },
258
+ {
259
+ "completion_length": 92.640625,
260
+ "epoch": 0.08298755186721991,
261
+ "grad_norm": 7.905738191363626,
262
+ "kl": 0.05615234375,
263
+ "learning_rate": 9.170124481327801e-07,
264
+ "loss": 0.0022,
265
+ "reward": 1.11328125,
266
+ "reward_std": 0.21515560150146484,
267
+ "rewards/accuracy_reward": 0.140625,
268
+ "rewards/format_reward": 0.97265625,
269
+ "step": 20
270
+ },
271
+ {
272
+ "completion_length": 90.3984375,
273
+ "epoch": 0.08713692946058091,
274
+ "grad_norm": 5.157524094818503,
275
+ "kl": 0.06298828125,
276
+ "learning_rate": 9.12863070539419e-07,
277
+ "loss": 0.0025,
278
+ "reward": 1.26171875,
279
+ "reward_std": 0.2477707862854004,
280
+ "rewards/accuracy_reward": 0.26953125,
281
+ "rewards/format_reward": 0.9921875,
282
+ "step": 21
283
+ },
284
+ {
285
+ "completion_length": 97.3203125,
286
+ "epoch": 0.0912863070539419,
287
+ "grad_norm": 7.010674413524611,
288
+ "kl": 0.072265625,
289
+ "learning_rate": 9.087136929460581e-07,
290
+ "loss": 0.0029,
291
+ "reward": 1.23046875,
292
+ "reward_std": 0.20519250631332397,
293
+ "rewards/accuracy_reward": 0.2421875,
294
+ "rewards/format_reward": 0.98828125,
295
+ "step": 22
296
+ },
297
+ {
298
+ "completion_length": 93.70703125,
299
+ "epoch": 0.0954356846473029,
300
+ "grad_norm": 895.4823242055704,
301
+ "kl": 4.6875,
302
+ "learning_rate": 9.04564315352697e-07,
303
+ "loss": 0.1871,
304
+ "reward": 1.1953125,
305
+ "reward_std": 0.2628646492958069,
306
+ "rewards/accuracy_reward": 0.2265625,
307
+ "rewards/format_reward": 0.96875,
308
+ "step": 23
309
+ },
310
+ {
311
+ "completion_length": 92.921875,
312
+ "epoch": 0.0995850622406639,
313
+ "grad_norm": 9.141621520119115,
314
+ "kl": 0.087890625,
315
+ "learning_rate": 9.004149377593361e-07,
316
+ "loss": 0.0035,
317
+ "reward": 1.140625,
318
+ "reward_std": 0.23703515529632568,
319
+ "rewards/accuracy_reward": 0.1640625,
320
+ "rewards/format_reward": 0.9765625,
321
+ "step": 24
322
+ },
323
+ {
324
+ "completion_length": 89.5859375,
325
+ "epoch": 0.1037344398340249,
326
+ "grad_norm": 11.592503375213493,
327
+ "kl": 0.0888671875,
328
+ "learning_rate": 8.96265560165975e-07,
329
+ "loss": 0.0036,
330
+ "reward": 1.2578125,
331
+ "reward_std": 0.2782890200614929,
332
+ "rewards/accuracy_reward": 0.26953125,
333
+ "rewards/format_reward": 0.98828125,
334
+ "step": 25
335
+ },
336
+ {
337
+ "completion_length": 92.765625,
338
+ "epoch": 0.1078838174273859,
339
+ "grad_norm": 4.844037513428872,
340
+ "kl": 0.08740234375,
341
+ "learning_rate": 8.921161825726141e-07,
342
+ "loss": 0.0035,
343
+ "reward": 1.21484375,
344
+ "reward_std": 0.3296912610530853,
345
+ "rewards/accuracy_reward": 0.234375,
346
+ "rewards/format_reward": 0.98046875,
347
+ "step": 26
348
+ },
349
+ {
350
+ "completion_length": 77.96484375,
351
+ "epoch": 0.11203319502074689,
352
+ "grad_norm": 28.980687466181028,
353
+ "kl": 0.11279296875,
354
+ "learning_rate": 8.879668049792531e-07,
355
+ "loss": 0.0045,
356
+ "reward": 1.2421875,
357
+ "reward_std": 0.24264347553253174,
358
+ "rewards/accuracy_reward": 0.2578125,
359
+ "rewards/format_reward": 0.984375,
360
+ "step": 27
361
+ },
362
+ {
363
+ "completion_length": 72.87109375,
364
+ "epoch": 0.11618257261410789,
365
+ "grad_norm": 7972.551755677257,
366
+ "kl": 2.359375,
367
+ "learning_rate": 8.83817427385892e-07,
368
+ "loss": 0.0942,
369
+ "reward": 1.25390625,
370
+ "reward_std": 0.26447463035583496,
371
+ "rewards/accuracy_reward": 0.26953125,
372
+ "rewards/format_reward": 0.984375,
373
+ "step": 28
374
+ },
375
+ {
376
+ "completion_length": 80.0234375,
377
+ "epoch": 0.12033195020746888,
378
+ "grad_norm": 148541.21316902922,
379
+ "kl": 102.0,
380
+ "learning_rate": 8.796680497925311e-07,
381
+ "loss": 4.0946,
382
+ "reward": 1.21484375,
383
+ "reward_std": 0.2021351009607315,
384
+ "rewards/accuracy_reward": 0.22265625,
385
+ "rewards/format_reward": 0.9921875,
386
+ "step": 29
387
+ },
388
+ {
389
+ "completion_length": 71.890625,
390
+ "epoch": 0.12448132780082988,
391
+ "grad_norm": 155.11184072334507,
392
+ "kl": 0.154296875,
393
+ "learning_rate": 8.7551867219917e-07,
394
+ "loss": 0.0062,
395
+ "reward": 1.2421875,
396
+ "reward_std": 0.33442190289497375,
397
+ "rewards/accuracy_reward": 0.28125,
398
+ "rewards/format_reward": 0.9609375,
399
+ "step": 30
400
+ },
401
+ {
402
+ "completion_length": 72.9765625,
403
+ "epoch": 0.12863070539419086,
404
+ "grad_norm": 6.669125194641157,
405
+ "kl": 0.1435546875,
406
+ "learning_rate": 8.713692946058091e-07,
407
+ "loss": 0.0058,
408
+ "reward": 1.25390625,
409
+ "reward_std": 0.26459574699401855,
410
+ "rewards/accuracy_reward": 0.25390625,
411
+ "rewards/format_reward": 1.0,
412
+ "step": 31
413
+ },
414
+ {
415
+ "completion_length": 92.39453125,
416
+ "epoch": 0.13278008298755187,
417
+ "grad_norm": 8.594154520894591,
418
+ "kl": 0.12060546875,
419
+ "learning_rate": 8.672199170124481e-07,
420
+ "loss": 0.0048,
421
+ "reward": 1.296875,
422
+ "reward_std": 0.26187676191329956,
423
+ "rewards/accuracy_reward": 0.31640625,
424
+ "rewards/format_reward": 0.98046875,
425
+ "step": 32
426
+ },
427
+ {
428
+ "completion_length": 78.91796875,
429
+ "epoch": 0.13692946058091288,
430
+ "grad_norm": 7.555816953155662,
431
+ "kl": 0.158203125,
432
+ "learning_rate": 8.630705394190871e-07,
433
+ "loss": 0.0063,
434
+ "reward": 1.203125,
435
+ "reward_std": 0.25460314750671387,
436
+ "rewards/accuracy_reward": 0.21484375,
437
+ "rewards/format_reward": 0.98828125,
438
+ "step": 33
439
+ },
440
+ {
441
+ "completion_length": 73.20703125,
442
+ "epoch": 0.14107883817427386,
443
+ "grad_norm": 19.83628645685219,
444
+ "kl": 0.1591796875,
445
+ "learning_rate": 8.589211618257261e-07,
446
+ "loss": 0.0064,
447
+ "reward": 1.28515625,
448
+ "reward_std": 0.3227723240852356,
449
+ "rewards/accuracy_reward": 0.30078125,
450
+ "rewards/format_reward": 0.984375,
451
+ "step": 34
452
+ },
453
+ {
454
+ "completion_length": 73.3515625,
455
+ "epoch": 0.14522821576763487,
456
+ "grad_norm": 8.311376906204279,
457
+ "kl": 0.2197265625,
458
+ "learning_rate": 8.54771784232365e-07,
459
+ "loss": 0.0088,
460
+ "reward": 1.1953125,
461
+ "reward_std": 0.2911452054977417,
462
+ "rewards/accuracy_reward": 0.21875,
463
+ "rewards/format_reward": 0.9765625,
464
+ "step": 35
465
+ },
466
+ {
467
+ "completion_length": 81.99609375,
468
+ "epoch": 0.14937759336099585,
469
+ "grad_norm": 10.43036199186392,
470
+ "kl": 0.12890625,
471
+ "learning_rate": 8.506224066390041e-07,
472
+ "loss": 0.0052,
473
+ "reward": 1.2578125,
474
+ "reward_std": 0.3043610155582428,
475
+ "rewards/accuracy_reward": 0.2734375,
476
+ "rewards/format_reward": 0.984375,
477
+ "step": 36
478
+ },
479
+ {
480
+ "completion_length": 73.796875,
481
+ "epoch": 0.15352697095435686,
482
+ "grad_norm": 57.24643236121668,
483
+ "kl": 0.1357421875,
484
+ "learning_rate": 8.464730290456431e-07,
485
+ "loss": 0.0054,
486
+ "reward": 1.21875,
487
+ "reward_std": 0.28197723627090454,
488
+ "rewards/accuracy_reward": 0.25,
489
+ "rewards/format_reward": 0.96875,
490
+ "step": 37
491
+ },
492
+ {
493
+ "completion_length": 89.75390625,
494
+ "epoch": 0.15767634854771784,
495
+ "grad_norm": 19.872397533152718,
496
+ "kl": 0.1064453125,
497
+ "learning_rate": 8.423236514522821e-07,
498
+ "loss": 0.0043,
499
+ "reward": 1.234375,
500
+ "reward_std": 0.250660240650177,
501
+ "rewards/accuracy_reward": 0.234375,
502
+ "rewards/format_reward": 1.0,
503
+ "step": 38
504
+ },
505
+ {
506
+ "completion_length": 92.703125,
507
+ "epoch": 0.16182572614107885,
508
+ "grad_norm": 11.503069481139981,
509
+ "kl": 0.09326171875,
510
+ "learning_rate": 8.381742738589212e-07,
511
+ "loss": 0.0037,
512
+ "reward": 1.234375,
513
+ "reward_std": 0.34505003690719604,
514
+ "rewards/accuracy_reward": 0.2734375,
515
+ "rewards/format_reward": 0.9609375,
516
+ "step": 39
517
+ },
518
+ {
519
+ "completion_length": 89.04296875,
520
+ "epoch": 0.16597510373443983,
521
+ "grad_norm": 18.044182586396225,
522
+ "kl": 0.103515625,
523
+ "learning_rate": 8.340248962655602e-07,
524
+ "loss": 0.0041,
525
+ "reward": 1.140625,
526
+ "reward_std": 0.28612154722213745,
527
+ "rewards/accuracy_reward": 0.171875,
528
+ "rewards/format_reward": 0.96875,
529
+ "step": 40
530
+ },
531
+ {
532
+ "completion_length": 92.12890625,
533
+ "epoch": 0.17012448132780084,
534
+ "grad_norm": 955.7098863804349,
535
+ "kl": 6.21875,
536
+ "learning_rate": 8.298755186721992e-07,
537
+ "loss": 0.2497,
538
+ "reward": 1.15625,
539
+ "reward_std": 0.3010457158088684,
540
+ "rewards/accuracy_reward": 0.24609375,
541
+ "rewards/format_reward": 0.91015625,
542
+ "step": 41
543
+ },
544
+ {
545
+ "completion_length": 92.9375,
546
+ "epoch": 0.17427385892116182,
547
+ "grad_norm": 19789.27042408252,
548
+ "kl": 38.75,
549
+ "learning_rate": 8.257261410788381e-07,
550
+ "loss": 1.5507,
551
+ "reward": 1.17578125,
552
+ "reward_std": 0.24686214327812195,
553
+ "rewards/accuracy_reward": 0.20703125,
554
+ "rewards/format_reward": 0.96875,
555
+ "step": 42
556
+ },
557
+ {
558
+ "completion_length": 103.703125,
559
+ "epoch": 0.17842323651452283,
560
+ "grad_norm": 5.178711424894338,
561
+ "kl": 0.07666015625,
562
+ "learning_rate": 8.215767634854771e-07,
563
+ "loss": 0.0031,
564
+ "reward": 1.16015625,
565
+ "reward_std": 0.2846824824810028,
566
+ "rewards/accuracy_reward": 0.1875,
567
+ "rewards/format_reward": 0.97265625,
568
+ "step": 43
569
+ },
570
+ {
571
+ "completion_length": 96.78125,
572
+ "epoch": 0.1825726141078838,
573
+ "grad_norm": 79.81973712987309,
574
+ "kl": 0.2138671875,
575
+ "learning_rate": 8.174273858921161e-07,
576
+ "loss": 0.0086,
577
+ "reward": 1.1171875,
578
+ "reward_std": 0.2437995821237564,
579
+ "rewards/accuracy_reward": 0.1875,
580
+ "rewards/format_reward": 0.9296875,
581
+ "step": 44
582
+ },
583
+ {
584
+ "completion_length": 105.375,
585
+ "epoch": 0.18672199170124482,
586
+ "grad_norm": 44.03437371953703,
587
+ "kl": 0.1083984375,
588
+ "learning_rate": 8.132780082987552e-07,
589
+ "loss": 0.0043,
590
+ "reward": 1.1328125,
591
+ "reward_std": 0.28126898407936096,
592
+ "rewards/accuracy_reward": 0.171875,
593
+ "rewards/format_reward": 0.9609375,
594
+ "step": 45
595
+ },
596
+ {
597
+ "completion_length": 95.625,
598
+ "epoch": 0.1908713692946058,
599
+ "grad_norm": 255.29741353447812,
600
+ "kl": 0.2158203125,
601
+ "learning_rate": 8.091286307053942e-07,
602
+ "loss": 0.0087,
603
+ "reward": 1.26953125,
604
+ "reward_std": 0.30966654419898987,
605
+ "rewards/accuracy_reward": 0.28515625,
606
+ "rewards/format_reward": 0.984375,
607
+ "step": 46
608
+ },
609
+ {
610
+ "completion_length": 90.71484375,
611
+ "epoch": 0.1950207468879668,
612
+ "grad_norm": 141.664562557487,
613
+ "kl": 0.28125,
614
+ "learning_rate": 8.049792531120332e-07,
615
+ "loss": 0.0112,
616
+ "reward": 1.10546875,
617
+ "reward_std": 0.2388685643672943,
618
+ "rewards/accuracy_reward": 0.1484375,
619
+ "rewards/format_reward": 0.95703125,
620
+ "step": 47
621
+ },
622
+ {
623
+ "completion_length": 104.390625,
624
+ "epoch": 0.1991701244813278,
625
+ "grad_norm": 26.547793382795557,
626
+ "kl": 0.0625,
627
+ "learning_rate": 8.008298755186722e-07,
628
+ "loss": 0.0025,
629
+ "reward": 1.17578125,
630
+ "reward_std": 0.3045119643211365,
631
+ "rewards/accuracy_reward": 0.21875,
632
+ "rewards/format_reward": 0.95703125,
633
+ "step": 48
634
+ },
635
+ {
636
+ "completion_length": 103.8359375,
637
+ "epoch": 0.2033195020746888,
638
+ "grad_norm": 11.71623541450062,
639
+ "kl": 0.06103515625,
640
+ "learning_rate": 7.966804979253111e-07,
641
+ "loss": 0.0024,
642
+ "reward": 1.26953125,
643
+ "reward_std": 0.31901323795318604,
644
+ "rewards/accuracy_reward": 0.3046875,
645
+ "rewards/format_reward": 0.96484375,
646
+ "step": 49
647
+ },
648
+ {
649
+ "completion_length": 98.74609375,
650
+ "epoch": 0.2074688796680498,
651
+ "grad_norm": 28.06161637024887,
652
+ "kl": 0.078125,
653
+ "learning_rate": 7.925311203319502e-07,
654
+ "loss": 0.0031,
655
+ "reward": 1.15234375,
656
+ "reward_std": 0.23013246059417725,
657
+ "rewards/accuracy_reward": 0.19140625,
658
+ "rewards/format_reward": 0.9609375,
659
+ "step": 50
660
+ },
661
+ {
662
+ "completion_length": 106.44140625,
663
+ "epoch": 0.21161825726141079,
664
+ "grad_norm": 8.385727882590416,
665
+ "kl": 0.057373046875,
666
+ "learning_rate": 7.883817427385891e-07,
667
+ "loss": 0.0023,
668
+ "reward": 1.1953125,
669
+ "reward_std": 0.2811848223209381,
670
+ "rewards/accuracy_reward": 0.21484375,
671
+ "rewards/format_reward": 0.98046875,
672
+ "step": 51
673
+ },
674
+ {
675
+ "completion_length": 102.765625,
676
+ "epoch": 0.2157676348547718,
677
+ "grad_norm": 6.2531692527733425,
678
+ "kl": 0.06787109375,
679
+ "learning_rate": 7.842323651452282e-07,
680
+ "loss": 0.0027,
681
+ "reward": 1.34765625,
682
+ "reward_std": 0.2933124899864197,
683
+ "rewards/accuracy_reward": 0.375,
684
+ "rewards/format_reward": 0.97265625,
685
+ "step": 52
686
+ },
687
+ {
688
+ "completion_length": 108.328125,
689
+ "epoch": 0.21991701244813278,
690
+ "grad_norm": 3.8970282813938035,
691
+ "kl": 0.05859375,
692
+ "learning_rate": 7.800829875518672e-07,
693
+ "loss": 0.0023,
694
+ "reward": 1.19921875,
695
+ "reward_std": 0.27631211280822754,
696
+ "rewards/accuracy_reward": 0.2421875,
697
+ "rewards/format_reward": 0.95703125,
698
+ "step": 53
699
+ },
700
+ {
701
+ "completion_length": 115.71875,
702
+ "epoch": 0.22406639004149378,
703
+ "grad_norm": 4.0861620229361435,
704
+ "kl": 0.06396484375,
705
+ "learning_rate": 7.759336099585062e-07,
706
+ "loss": 0.0026,
707
+ "reward": 1.21875,
708
+ "reward_std": 0.32264500856399536,
709
+ "rewards/accuracy_reward": 0.26953125,
710
+ "rewards/format_reward": 0.94921875,
711
+ "step": 54
712
+ },
713
+ {
714
+ "completion_length": 109.42578125,
715
+ "epoch": 0.22821576763485477,
716
+ "grad_norm": 2.2229514837482967,
717
+ "kl": 0.0576171875,
718
+ "learning_rate": 7.717842323651453e-07,
719
+ "loss": 0.0023,
720
+ "reward": 1.1875,
721
+ "reward_std": 0.2718299627304077,
722
+ "rewards/accuracy_reward": 0.22265625,
723
+ "rewards/format_reward": 0.96484375,
724
+ "step": 55
725
+ },
726
+ {
727
+ "completion_length": 114.6171875,
728
+ "epoch": 0.23236514522821577,
729
+ "grad_norm": 6.044557856528395,
730
+ "kl": 0.051513671875,
731
+ "learning_rate": 7.676348547717842e-07,
732
+ "loss": 0.0021,
733
+ "reward": 1.28125,
734
+ "reward_std": 0.32618969678878784,
735
+ "rewards/accuracy_reward": 0.3125,
736
+ "rewards/format_reward": 0.96875,
737
+ "step": 56
738
+ },
739
+ {
740
+ "completion_length": 104.9921875,
741
+ "epoch": 0.23651452282157676,
742
+ "grad_norm": 3.7345492151935566,
743
+ "kl": 0.06298828125,
744
+ "learning_rate": 7.634854771784232e-07,
745
+ "loss": 0.0025,
746
+ "reward": 1.33203125,
747
+ "reward_std": 0.263650119304657,
748
+ "rewards/accuracy_reward": 0.359375,
749
+ "rewards/format_reward": 0.97265625,
750
+ "step": 57
751
+ },
752
+ {
753
+ "completion_length": 117.24609375,
754
+ "epoch": 0.24066390041493776,
755
+ "grad_norm": 9.681979509468285,
756
+ "kl": 0.054443359375,
757
+ "learning_rate": 7.593360995850621e-07,
758
+ "loss": 0.0022,
759
+ "reward": 1.125,
760
+ "reward_std": 0.26918965578079224,
761
+ "rewards/accuracy_reward": 0.18359375,
762
+ "rewards/format_reward": 0.94140625,
763
+ "step": 58
764
+ },
765
+ {
766
+ "completion_length": 110.26953125,
767
+ "epoch": 0.24481327800829875,
768
+ "grad_norm": 11.501649552098742,
769
+ "kl": 0.08251953125,
770
+ "learning_rate": 7.551867219917012e-07,
771
+ "loss": 0.0033,
772
+ "reward": 1.2109375,
773
+ "reward_std": 0.22527292370796204,
774
+ "rewards/accuracy_reward": 0.25,
775
+ "rewards/format_reward": 0.9609375,
776
+ "step": 59
777
+ },
778
+ {
779
+ "completion_length": 108.19921875,
780
+ "epoch": 0.24896265560165975,
781
+ "grad_norm": 9.965135528231466,
782
+ "kl": 0.06591796875,
783
+ "learning_rate": 7.510373443983403e-07,
784
+ "loss": 0.0026,
785
+ "reward": 1.2734375,
786
+ "reward_std": 0.3159399628639221,
787
+ "rewards/accuracy_reward": 0.328125,
788
+ "rewards/format_reward": 0.9453125,
789
+ "step": 60
790
+ },
791
+ {
792
+ "completion_length": 121.76171875,
793
+ "epoch": 0.25311203319502074,
794
+ "grad_norm": 1.8431613725044658,
795
+ "kl": 0.054931640625,
796
+ "learning_rate": 7.468879668049792e-07,
797
+ "loss": 0.0022,
798
+ "reward": 1.23046875,
799
+ "reward_std": 0.30954664945602417,
800
+ "rewards/accuracy_reward": 0.27734375,
801
+ "rewards/format_reward": 0.953125,
802
+ "step": 61
803
+ },
804
+ {
805
+ "completion_length": 115.984375,
806
+ "epoch": 0.2572614107883817,
807
+ "grad_norm": 14.722550985552658,
808
+ "kl": 0.07763671875,
809
+ "learning_rate": 7.427385892116183e-07,
810
+ "loss": 0.0031,
811
+ "reward": 1.1171875,
812
+ "reward_std": 0.2740333080291748,
813
+ "rewards/accuracy_reward": 0.1875,
814
+ "rewards/format_reward": 0.9296875,
815
+ "step": 62
816
+ },
817
+ {
818
+ "completion_length": 122.40625,
819
+ "epoch": 0.26141078838174275,
820
+ "grad_norm": 2.3435103733008082,
821
+ "kl": 0.0576171875,
822
+ "learning_rate": 7.385892116182572e-07,
823
+ "loss": 0.0023,
824
+ "reward": 1.16015625,
825
+ "reward_std": 0.32881489396095276,
826
+ "rewards/accuracy_reward": 0.24609375,
827
+ "rewards/format_reward": 0.9140625,
828
+ "step": 63
829
+ },
830
+ {
831
+ "completion_length": 111.37890625,
832
+ "epoch": 0.26556016597510373,
833
+ "grad_norm": 5.3464512193055205,
834
+ "kl": 0.0654296875,
835
+ "learning_rate": 7.344398340248963e-07,
836
+ "loss": 0.0026,
837
+ "reward": 1.26953125,
838
+ "reward_std": 0.27697107195854187,
839
+ "rewards/accuracy_reward": 0.28515625,
840
+ "rewards/format_reward": 0.984375,
841
+ "step": 64
842
+ },
843
+ {
844
+ "completion_length": 109.5078125,
845
+ "epoch": 0.2697095435684647,
846
+ "grad_norm": 22.06078984271988,
847
+ "kl": 0.06298828125,
848
+ "learning_rate": 7.302904564315351e-07,
849
+ "loss": 0.0025,
850
+ "reward": 1.2109375,
851
+ "reward_std": 0.2712310552597046,
852
+ "rewards/accuracy_reward": 0.24609375,
853
+ "rewards/format_reward": 0.96484375,
854
+ "step": 65
855
+ },
856
+ {
857
+ "completion_length": 120.81640625,
858
+ "epoch": 0.27385892116182575,
859
+ "grad_norm": 7.466388660174733,
860
+ "kl": 0.06298828125,
861
+ "learning_rate": 7.261410788381742e-07,
862
+ "loss": 0.0025,
863
+ "reward": 1.23828125,
864
+ "reward_std": 0.27975520491600037,
865
+ "rewards/accuracy_reward": 0.28515625,
866
+ "rewards/format_reward": 0.953125,
867
+ "step": 66
868
+ },
869
+ {
870
+ "completion_length": 110.5546875,
871
+ "epoch": 0.27800829875518673,
872
+ "grad_norm": 6.507257995412741,
873
+ "kl": 0.06787109375,
874
+ "learning_rate": 7.219917012448133e-07,
875
+ "loss": 0.0027,
876
+ "reward": 1.24609375,
877
+ "reward_std": 0.28682631254196167,
878
+ "rewards/accuracy_reward": 0.2734375,
879
+ "rewards/format_reward": 0.97265625,
880
+ "step": 67
881
+ },
882
+ {
883
+ "completion_length": 107.703125,
884
+ "epoch": 0.2821576763485477,
885
+ "grad_norm": 10.657799163428932,
886
+ "kl": 0.061767578125,
887
+ "learning_rate": 7.178423236514522e-07,
888
+ "loss": 0.0025,
889
+ "reward": 1.23046875,
890
+ "reward_std": 0.262653648853302,
891
+ "rewards/accuracy_reward": 0.2734375,
892
+ "rewards/format_reward": 0.95703125,
893
+ "step": 68
894
+ },
895
+ {
896
+ "completion_length": 98.36328125,
897
+ "epoch": 0.2863070539419087,
898
+ "grad_norm": 7.291922232973526,
899
+ "kl": 0.0634765625,
900
+ "learning_rate": 7.136929460580913e-07,
901
+ "loss": 0.0025,
902
+ "reward": 1.265625,
903
+ "reward_std": 0.2502795457839966,
904
+ "rewards/accuracy_reward": 0.2734375,
905
+ "rewards/format_reward": 0.9921875,
906
+ "step": 69
907
+ },
908
+ {
909
+ "completion_length": 108.15625,
910
+ "epoch": 0.29045643153526973,
911
+ "grad_norm": 2531.5651653482937,
912
+ "kl": 0.77734375,
913
+ "learning_rate": 7.095435684647303e-07,
914
+ "loss": 0.0311,
915
+ "reward": 1.1953125,
916
+ "reward_std": 0.3056316375732422,
917
+ "rewards/accuracy_reward": 0.234375,
918
+ "rewards/format_reward": 0.9609375,
919
+ "step": 70
920
+ },
921
+ {
922
+ "completion_length": 122.08203125,
923
+ "epoch": 0.2946058091286307,
924
+ "grad_norm": 7.2767653534750245,
925
+ "kl": 0.05517578125,
926
+ "learning_rate": 7.053941908713693e-07,
927
+ "loss": 0.0022,
928
+ "reward": 1.21484375,
929
+ "reward_std": 0.33597099781036377,
930
+ "rewards/accuracy_reward": 0.265625,
931
+ "rewards/format_reward": 0.94921875,
932
+ "step": 71
933
+ },
934
+ {
935
+ "completion_length": 112.4140625,
936
+ "epoch": 0.2987551867219917,
937
+ "grad_norm": 5.558748098185352,
938
+ "kl": 0.0576171875,
939
+ "learning_rate": 7.012448132780083e-07,
940
+ "loss": 0.0023,
941
+ "reward": 1.23046875,
942
+ "reward_std": 0.27381569147109985,
943
+ "rewards/accuracy_reward": 0.25,
944
+ "rewards/format_reward": 0.98046875,
945
+ "step": 72
946
+ },
947
+ {
948
+ "completion_length": 115.1171875,
949
+ "epoch": 0.3029045643153527,
950
+ "grad_norm": 146.48646129649492,
951
+ "kl": 0.1416015625,
952
+ "learning_rate": 6.970954356846472e-07,
953
+ "loss": 0.0056,
954
+ "reward": 1.24609375,
955
+ "reward_std": 0.3475721478462219,
956
+ "rewards/accuracy_reward": 0.296875,
957
+ "rewards/format_reward": 0.94921875,
958
+ "step": 73
959
+ },
960
+ {
961
+ "completion_length": 105.43359375,
962
+ "epoch": 0.3070539419087137,
963
+ "grad_norm": 20.98944404533785,
964
+ "kl": 0.1474609375,
965
+ "learning_rate": 6.929460580912863e-07,
966
+ "loss": 0.0059,
967
+ "reward": 1.18359375,
968
+ "reward_std": 0.1996288001537323,
969
+ "rewards/accuracy_reward": 0.22265625,
970
+ "rewards/format_reward": 0.9609375,
971
+ "step": 74
972
+ },
973
+ {
974
+ "completion_length": 107.79296875,
975
+ "epoch": 0.3112033195020747,
976
+ "grad_norm": 2.8266704753608516,
977
+ "kl": 0.06201171875,
978
+ "learning_rate": 6.887966804979252e-07,
979
+ "loss": 0.0025,
980
+ "reward": 1.25,
981
+ "reward_std": 0.2760782241821289,
982
+ "rewards/accuracy_reward": 0.26953125,
983
+ "rewards/format_reward": 0.98046875,
984
+ "step": 75
985
+ },
986
+ {
987
+ "completion_length": 121.66796875,
988
+ "epoch": 0.3153526970954357,
989
+ "grad_norm": 77.92500399218551,
990
+ "kl": 0.06689453125,
991
+ "learning_rate": 6.846473029045643e-07,
992
+ "loss": 0.0027,
993
+ "reward": 1.24609375,
994
+ "reward_std": 0.30910396575927734,
995
+ "rewards/accuracy_reward": 0.28515625,
996
+ "rewards/format_reward": 0.9609375,
997
+ "step": 76
998
+ },
999
+ {
1000
+ "completion_length": 111.671875,
1001
+ "epoch": 0.31950207468879666,
1002
+ "grad_norm": 4.702893593213397,
1003
+ "kl": 0.05224609375,
1004
+ "learning_rate": 6.804979253112033e-07,
1005
+ "loss": 0.0021,
1006
+ "reward": 1.1953125,
1007
+ "reward_std": 0.224736750125885,
1008
+ "rewards/accuracy_reward": 0.22265625,
1009
+ "rewards/format_reward": 0.97265625,
1010
+ "step": 77
1011
+ },
1012
+ {
1013
+ "completion_length": 100.1640625,
1014
+ "epoch": 0.3236514522821577,
1015
+ "grad_norm": 14.209228868230555,
1016
+ "kl": 0.08740234375,
1017
+ "learning_rate": 6.763485477178423e-07,
1018
+ "loss": 0.0035,
1019
+ "reward": 1.171875,
1020
+ "reward_std": 0.21961188316345215,
1021
+ "rewards/accuracy_reward": 0.19921875,
1022
+ "rewards/format_reward": 0.97265625,
1023
+ "step": 78
1024
+ },
1025
+ {
1026
+ "completion_length": 109.49609375,
1027
+ "epoch": 0.3278008298755187,
1028
+ "grad_norm": 579.9463703947171,
1029
+ "kl": 0.18359375,
1030
+ "learning_rate": 6.721991701244814e-07,
1031
+ "loss": 0.0074,
1032
+ "reward": 1.19140625,
1033
+ "reward_std": 0.3556343615055084,
1034
+ "rewards/accuracy_reward": 0.25,
1035
+ "rewards/format_reward": 0.94140625,
1036
+ "step": 79
1037
+ },
1038
+ {
1039
+ "completion_length": 105.04296875,
1040
+ "epoch": 0.33195020746887965,
1041
+ "grad_norm": 5927.641237621651,
1042
+ "kl": 6.4375,
1043
+ "learning_rate": 6.680497925311202e-07,
1044
+ "loss": 0.2576,
1045
+ "reward": 1.25390625,
1046
+ "reward_std": 0.337135374546051,
1047
+ "rewards/accuracy_reward": 0.2890625,
1048
+ "rewards/format_reward": 0.96484375,
1049
+ "step": 80
1050
+ },
1051
+ {
1052
+ "completion_length": 104.91796875,
1053
+ "epoch": 0.3360995850622407,
1054
+ "grad_norm": 4.577287332890265,
1055
+ "kl": 0.068359375,
1056
+ "learning_rate": 6.639004149377593e-07,
1057
+ "loss": 0.0027,
1058
+ "reward": 1.2578125,
1059
+ "reward_std": 0.22225633263587952,
1060
+ "rewards/accuracy_reward": 0.265625,
1061
+ "rewards/format_reward": 0.9921875,
1062
+ "step": 81
1063
+ },
1064
+ {
1065
+ "completion_length": 110.57421875,
1066
+ "epoch": 0.34024896265560167,
1067
+ "grad_norm": 80.31923623358058,
1068
+ "kl": 0.142578125,
1069
+ "learning_rate": 6.597510373443983e-07,
1070
+ "loss": 0.0057,
1071
+ "reward": 1.24609375,
1072
+ "reward_std": 0.30580008029937744,
1073
+ "rewards/accuracy_reward": 0.28515625,
1074
+ "rewards/format_reward": 0.9609375,
1075
+ "step": 82
1076
+ },
1077
+ {
1078
+ "completion_length": 110.4140625,
1079
+ "epoch": 0.34439834024896265,
1080
+ "grad_norm": 3.697288528310834,
1081
+ "kl": 0.0712890625,
1082
+ "learning_rate": 6.556016597510373e-07,
1083
+ "loss": 0.0029,
1084
+ "reward": 1.25390625,
1085
+ "reward_std": 0.2552226185798645,
1086
+ "rewards/accuracy_reward": 0.28125,
1087
+ "rewards/format_reward": 0.97265625,
1088
+ "step": 83
1089
+ },
1090
+ {
1091
+ "completion_length": 104.67578125,
1092
+ "epoch": 0.34854771784232363,
1093
+ "grad_norm": 5.229318975289039,
1094
+ "kl": 0.06982421875,
1095
+ "learning_rate": 6.514522821576763e-07,
1096
+ "loss": 0.0028,
1097
+ "reward": 1.26953125,
1098
+ "reward_std": 0.24407757818698883,
1099
+ "rewards/accuracy_reward": 0.29296875,
1100
+ "rewards/format_reward": 0.9765625,
1101
+ "step": 84
1102
+ },
1103
+ {
1104
+ "completion_length": 103.8828125,
1105
+ "epoch": 0.35269709543568467,
1106
+ "grad_norm": 2252.8465055849706,
1107
+ "kl": 18.75,
1108
+ "learning_rate": 6.473029045643154e-07,
1109
+ "loss": 0.7462,
1110
+ "reward": 1.21875,
1111
+ "reward_std": 0.32842758297920227,
1112
+ "rewards/accuracy_reward": 0.23828125,
1113
+ "rewards/format_reward": 0.98046875,
1114
+ "step": 85
1115
+ },
1116
+ {
1117
+ "completion_length": 110.5625,
1118
+ "epoch": 0.35684647302904565,
1119
+ "grad_norm": 4.971947739502407,
1120
+ "kl": 0.0673828125,
1121
+ "learning_rate": 6.431535269709544e-07,
1122
+ "loss": 0.0027,
1123
+ "reward": 1.2421875,
1124
+ "reward_std": 0.28188830614089966,
1125
+ "rewards/accuracy_reward": 0.2734375,
1126
+ "rewards/format_reward": 0.96875,
1127
+ "step": 86
1128
+ },
1129
+ {
1130
+ "completion_length": 118.6484375,
1131
+ "epoch": 0.36099585062240663,
1132
+ "grad_norm": 8.208637190208675,
1133
+ "kl": 0.0634765625,
1134
+ "learning_rate": 6.390041493775933e-07,
1135
+ "loss": 0.0025,
1136
+ "reward": 1.06640625,
1137
+ "reward_std": 0.25959229469299316,
1138
+ "rewards/accuracy_reward": 0.11328125,
1139
+ "rewards/format_reward": 0.953125,
1140
+ "step": 87
1141
+ },
1142
+ {
1143
+ "completion_length": 96.6875,
1144
+ "epoch": 0.3651452282157676,
1145
+ "grad_norm": 38.459676626860556,
1146
+ "kl": 0.1552734375,
1147
+ "learning_rate": 6.348547717842323e-07,
1148
+ "loss": 0.0062,
1149
+ "reward": 1.29296875,
1150
+ "reward_std": 0.29796260595321655,
1151
+ "rewards/accuracy_reward": 0.34765625,
1152
+ "rewards/format_reward": 0.9453125,
1153
+ "step": 88
1154
+ },
1155
+ {
1156
+ "completion_length": 92.484375,
1157
+ "epoch": 0.36929460580912865,
1158
+ "grad_norm": 11.251071020115205,
1159
+ "kl": 0.087890625,
1160
+ "learning_rate": 6.307053941908713e-07,
1161
+ "loss": 0.0035,
1162
+ "reward": 1.1328125,
1163
+ "reward_std": 0.26419880986213684,
1164
+ "rewards/accuracy_reward": 0.171875,
1165
+ "rewards/format_reward": 0.9609375,
1166
+ "step": 89
1167
+ },
1168
+ {
1169
+ "completion_length": 94.71875,
1170
+ "epoch": 0.37344398340248963,
1171
+ "grad_norm": 73.08860324819888,
1172
+ "kl": 0.1318359375,
1173
+ "learning_rate": 6.265560165975103e-07,
1174
+ "loss": 0.0053,
1175
+ "reward": 1.24609375,
1176
+ "reward_std": 0.28619101643562317,
1177
+ "rewards/accuracy_reward": 0.26171875,
1178
+ "rewards/format_reward": 0.984375,
1179
+ "step": 90
1180
+ },
1181
+ {
1182
+ "completion_length": 105.15625,
1183
+ "epoch": 0.3775933609958506,
1184
+ "grad_norm": 32.762748338362975,
1185
+ "kl": 0.07763671875,
1186
+ "learning_rate": 6.224066390041493e-07,
1187
+ "loss": 0.0031,
1188
+ "reward": 1.2109375,
1189
+ "reward_std": 0.33037883043289185,
1190
+ "rewards/accuracy_reward": 0.23828125,
1191
+ "rewards/format_reward": 0.97265625,
1192
+ "step": 91
1193
+ },
1194
+ {
1195
+ "completion_length": 96.0703125,
1196
+ "epoch": 0.3817427385892116,
1197
+ "grad_norm": 5.087858102518854,
1198
+ "kl": 0.07861328125,
1199
+ "learning_rate": 6.182572614107884e-07,
1200
+ "loss": 0.0031,
1201
+ "reward": 1.2265625,
1202
+ "reward_std": 0.3091992139816284,
1203
+ "rewards/accuracy_reward": 0.2421875,
1204
+ "rewards/format_reward": 0.984375,
1205
+ "step": 92
1206
+ },
1207
+ {
1208
+ "completion_length": 100.95703125,
1209
+ "epoch": 0.38589211618257263,
1210
+ "grad_norm": 12.724022811120527,
1211
+ "kl": 0.0830078125,
1212
+ "learning_rate": 6.141078838174274e-07,
1213
+ "loss": 0.0033,
1214
+ "reward": 1.21875,
1215
+ "reward_std": 0.29461750388145447,
1216
+ "rewards/accuracy_reward": 0.24609375,
1217
+ "rewards/format_reward": 0.97265625,
1218
+ "step": 93
1219
+ },
1220
+ {
1221
+ "completion_length": 104.11328125,
1222
+ "epoch": 0.3900414937759336,
1223
+ "grad_norm": 17.194627861953816,
1224
+ "kl": 0.08642578125,
1225
+ "learning_rate": 6.099585062240664e-07,
1226
+ "loss": 0.0035,
1227
+ "reward": 1.2265625,
1228
+ "reward_std": 0.2846662104129791,
1229
+ "rewards/accuracy_reward": 0.2421875,
1230
+ "rewards/format_reward": 0.984375,
1231
+ "step": 94
1232
+ },
1233
+ {
1234
+ "completion_length": 92.14453125,
1235
+ "epoch": 0.3941908713692946,
1236
+ "grad_norm": 7.192313306035128,
1237
+ "kl": 0.08642578125,
1238
+ "learning_rate": 6.058091286307053e-07,
1239
+ "loss": 0.0035,
1240
+ "reward": 1.2734375,
1241
+ "reward_std": 0.23374123871326447,
1242
+ "rewards/accuracy_reward": 0.2890625,
1243
+ "rewards/format_reward": 0.984375,
1244
+ "step": 95
1245
+ },
1246
+ {
1247
+ "completion_length": 84.6328125,
1248
+ "epoch": 0.3983402489626556,
1249
+ "grad_norm": 47.641365377607805,
1250
+ "kl": 0.1025390625,
1251
+ "learning_rate": 6.016597510373443e-07,
1252
+ "loss": 0.0041,
1253
+ "reward": 1.2890625,
1254
+ "reward_std": 0.28897759318351746,
1255
+ "rewards/accuracy_reward": 0.30859375,
1256
+ "rewards/format_reward": 0.98046875,
1257
+ "step": 96
1258
+ },
1259
+ {
1260
+ "completion_length": 78.61328125,
1261
+ "epoch": 0.4024896265560166,
1262
+ "grad_norm": 253.81419290673912,
1263
+ "kl": 1.9609375,
1264
+ "learning_rate": 5.975103734439834e-07,
1265
+ "loss": 0.0787,
1266
+ "reward": 1.2734375,
1267
+ "reward_std": 0.2571094334125519,
1268
+ "rewards/accuracy_reward": 0.28515625,
1269
+ "rewards/format_reward": 0.98828125,
1270
+ "step": 97
1271
+ },
1272
+ {
1273
+ "completion_length": 88.37109375,
1274
+ "epoch": 0.4066390041493776,
1275
+ "grad_norm": 12.19756385611491,
1276
+ "kl": 0.0986328125,
1277
+ "learning_rate": 5.933609958506224e-07,
1278
+ "loss": 0.0039,
1279
+ "reward": 1.234375,
1280
+ "reward_std": 0.2579057812690735,
1281
+ "rewards/accuracy_reward": 0.25,
1282
+ "rewards/format_reward": 0.984375,
1283
+ "step": 98
1284
+ },
1285
+ {
1286
+ "completion_length": 94.3125,
1287
+ "epoch": 0.4107883817427386,
1288
+ "grad_norm": 8.78041276853543,
1289
+ "kl": 0.0927734375,
1290
+ "learning_rate": 5.892116182572614e-07,
1291
+ "loss": 0.0037,
1292
+ "reward": 1.18359375,
1293
+ "reward_std": 0.32227471470832825,
1294
+ "rewards/accuracy_reward": 0.21875,
1295
+ "rewards/format_reward": 0.96484375,
1296
+ "step": 99
1297
+ },
1298
+ {
1299
+ "completion_length": 92.3828125,
1300
+ "epoch": 0.4149377593360996,
1301
+ "grad_norm": 8.518814664938573,
1302
+ "kl": 0.0859375,
1303
+ "learning_rate": 5.850622406639005e-07,
1304
+ "loss": 0.0034,
1305
+ "reward": 1.21484375,
1306
+ "reward_std": 0.24748478829860687,
1307
+ "rewards/accuracy_reward": 0.23046875,
1308
+ "rewards/format_reward": 0.984375,
1309
+ "step": 100
1310
+ },
1311
+ {
1312
+ "completion_length": 85.60546875,
1313
+ "epoch": 0.4190871369294606,
1314
+ "grad_norm": 4.704027215633879,
1315
+ "kl": 0.10205078125,
1316
+ "learning_rate": 5.809128630705394e-07,
1317
+ "loss": 0.0041,
1318
+ "reward": 1.1796875,
1319
+ "reward_std": 0.22647252678871155,
1320
+ "rewards/accuracy_reward": 0.19140625,
1321
+ "rewards/format_reward": 0.98828125,
1322
+ "step": 101
1323
+ },
1324
+ {
1325
+ "completion_length": 99.41796875,
1326
+ "epoch": 0.42323651452282157,
1327
+ "grad_norm": 4.680746289931085,
1328
+ "kl": 0.08935546875,
1329
+ "learning_rate": 5.767634854771784e-07,
1330
+ "loss": 0.0036,
1331
+ "reward": 1.36328125,
1332
+ "reward_std": 0.3082295060157776,
1333
+ "rewards/accuracy_reward": 0.37890625,
1334
+ "rewards/format_reward": 0.984375,
1335
+ "step": 102
1336
+ },
1337
+ {
1338
+ "completion_length": 93.4453125,
1339
+ "epoch": 0.42738589211618255,
1340
+ "grad_norm": 6.65500574546716,
1341
+ "kl": 0.1103515625,
1342
+ "learning_rate": 5.726141078838173e-07,
1343
+ "loss": 0.0044,
1344
+ "reward": 1.30078125,
1345
+ "reward_std": 0.2698420286178589,
1346
+ "rewards/accuracy_reward": 0.31640625,
1347
+ "rewards/format_reward": 0.984375,
1348
+ "step": 103
1349
+ },
1350
+ {
1351
+ "completion_length": 105.11328125,
1352
+ "epoch": 0.4315352697095436,
1353
+ "grad_norm": 5.773576507821817,
1354
+ "kl": 0.08251953125,
1355
+ "learning_rate": 5.684647302904564e-07,
1356
+ "loss": 0.0033,
1357
+ "reward": 1.2421875,
1358
+ "reward_std": 0.2864542603492737,
1359
+ "rewards/accuracy_reward": 0.265625,
1360
+ "rewards/format_reward": 0.9765625,
1361
+ "step": 104
1362
+ },
1363
+ {
1364
+ "completion_length": 87.703125,
1365
+ "epoch": 0.43568464730290457,
1366
+ "grad_norm": 11.513429520019525,
1367
+ "kl": 0.109375,
1368
+ "learning_rate": 5.643153526970955e-07,
1369
+ "loss": 0.0044,
1370
+ "reward": 1.27734375,
1371
+ "reward_std": 0.2987739145755768,
1372
+ "rewards/accuracy_reward": 0.2890625,
1373
+ "rewards/format_reward": 0.98828125,
1374
+ "step": 105
1375
+ },
1376
+ {
1377
+ "completion_length": 85.6328125,
1378
+ "epoch": 0.43983402489626555,
1379
+ "grad_norm": 7.2230530225685134,
1380
+ "kl": 0.10693359375,
1381
+ "learning_rate": 5.601659751037344e-07,
1382
+ "loss": 0.0043,
1383
+ "reward": 1.203125,
1384
+ "reward_std": 0.2508074939250946,
1385
+ "rewards/accuracy_reward": 0.2109375,
1386
+ "rewards/format_reward": 0.9921875,
1387
+ "step": 106
1388
+ },
1389
+ {
1390
+ "completion_length": 91.26171875,
1391
+ "epoch": 0.44398340248962653,
1392
+ "grad_norm": 11.723926666762416,
1393
+ "kl": 0.0849609375,
1394
+ "learning_rate": 5.560165975103735e-07,
1395
+ "loss": 0.0034,
1396
+ "reward": 1.2578125,
1397
+ "reward_std": 0.24281391501426697,
1398
+ "rewards/accuracy_reward": 0.2734375,
1399
+ "rewards/format_reward": 0.984375,
1400
+ "step": 107
1401
+ },
1402
+ {
1403
+ "completion_length": 85.66796875,
1404
+ "epoch": 0.44813278008298757,
1405
+ "grad_norm": 19.25236764754529,
1406
+ "kl": 0.09716796875,
1407
+ "learning_rate": 5.518672199170124e-07,
1408
+ "loss": 0.0039,
1409
+ "reward": 1.29296875,
1410
+ "reward_std": 0.27077654004096985,
1411
+ "rewards/accuracy_reward": 0.29296875,
1412
+ "rewards/format_reward": 1.0,
1413
+ "step": 108
1414
+ },
1415
+ {
1416
+ "completion_length": 95.21875,
1417
+ "epoch": 0.45228215767634855,
1418
+ "grad_norm": 3.839508040726909,
1419
+ "kl": 0.1015625,
1420
+ "learning_rate": 5.477178423236515e-07,
1421
+ "loss": 0.0041,
1422
+ "reward": 1.171875,
1423
+ "reward_std": 0.26314786076545715,
1424
+ "rewards/accuracy_reward": 0.203125,
1425
+ "rewards/format_reward": 0.96875,
1426
+ "step": 109
1427
+ },
1428
+ {
1429
+ "completion_length": 87.390625,
1430
+ "epoch": 0.45643153526970953,
1431
+ "grad_norm": 4.757921717516325,
1432
+ "kl": 0.1025390625,
1433
+ "learning_rate": 5.435684647302903e-07,
1434
+ "loss": 0.0041,
1435
+ "reward": 1.234375,
1436
+ "reward_std": 0.249478280544281,
1437
+ "rewards/accuracy_reward": 0.2421875,
1438
+ "rewards/format_reward": 0.9921875,
1439
+ "step": 110
1440
+ },
1441
+ {
1442
+ "completion_length": 90.4609375,
1443
+ "epoch": 0.4605809128630705,
1444
+ "grad_norm": 12.145850813087781,
1445
+ "kl": 0.08984375,
1446
+ "learning_rate": 5.394190871369294e-07,
1447
+ "loss": 0.0036,
1448
+ "reward": 1.1640625,
1449
+ "reward_std": 0.17517516016960144,
1450
+ "rewards/accuracy_reward": 0.16796875,
1451
+ "rewards/format_reward": 0.99609375,
1452
+ "step": 111
1453
+ },
1454
+ {
1455
+ "completion_length": 94.23046875,
1456
+ "epoch": 0.46473029045643155,
1457
+ "grad_norm": 11.118828549631772,
1458
+ "kl": 0.08740234375,
1459
+ "learning_rate": 5.352697095435685e-07,
1460
+ "loss": 0.0035,
1461
+ "reward": 1.203125,
1462
+ "reward_std": 0.30724799633026123,
1463
+ "rewards/accuracy_reward": 0.22265625,
1464
+ "rewards/format_reward": 0.98046875,
1465
+ "step": 112
1466
+ },
1467
+ {
1468
+ "completion_length": 98.54296875,
1469
+ "epoch": 0.46887966804979253,
1470
+ "grad_norm": 12.335705990530665,
1471
+ "kl": 0.091796875,
1472
+ "learning_rate": 5.311203319502074e-07,
1473
+ "loss": 0.0037,
1474
+ "reward": 1.3515625,
1475
+ "reward_std": 0.2899443805217743,
1476
+ "rewards/accuracy_reward": 0.3671875,
1477
+ "rewards/format_reward": 0.984375,
1478
+ "step": 113
1479
+ },
1480
+ {
1481
+ "completion_length": 87.42578125,
1482
+ "epoch": 0.4730290456431535,
1483
+ "grad_norm": 4.2994268361338,
1484
+ "kl": 0.10498046875,
1485
+ "learning_rate": 5.269709543568465e-07,
1486
+ "loss": 0.0042,
1487
+ "reward": 1.171875,
1488
+ "reward_std": 0.22647252678871155,
1489
+ "rewards/accuracy_reward": 0.18359375,
1490
+ "rewards/format_reward": 0.98828125,
1491
+ "step": 114
1492
+ },
1493
+ {
1494
+ "completion_length": 90.40234375,
1495
+ "epoch": 0.47717842323651455,
1496
+ "grad_norm": 7.3486884231249805,
1497
+ "kl": 0.10205078125,
1498
+ "learning_rate": 5.228215767634854e-07,
1499
+ "loss": 0.0041,
1500
+ "reward": 1.1796875,
1501
+ "reward_std": 0.26744821667671204,
1502
+ "rewards/accuracy_reward": 0.19140625,
1503
+ "rewards/format_reward": 0.98828125,
1504
+ "step": 115
1505
+ },
1506
+ {
1507
+ "completion_length": 93.9921875,
1508
+ "epoch": 0.48132780082987553,
1509
+ "grad_norm": 21.449341096677863,
1510
+ "kl": 0.09765625,
1511
+ "learning_rate": 5.186721991701245e-07,
1512
+ "loss": 0.0039,
1513
+ "reward": 1.27734375,
1514
+ "reward_std": 0.3352429270744324,
1515
+ "rewards/accuracy_reward": 0.296875,
1516
+ "rewards/format_reward": 0.98046875,
1517
+ "step": 116
1518
+ },
1519
+ {
1520
+ "completion_length": 97.37890625,
1521
+ "epoch": 0.4854771784232365,
1522
+ "grad_norm": 3.291074287652009,
1523
+ "kl": 0.0830078125,
1524
+ "learning_rate": 5.145228215767634e-07,
1525
+ "loss": 0.0033,
1526
+ "reward": 1.234375,
1527
+ "reward_std": 0.2131577730178833,
1528
+ "rewards/accuracy_reward": 0.25390625,
1529
+ "rewards/format_reward": 0.98046875,
1530
+ "step": 117
1531
+ },
1532
+ {
1533
+ "completion_length": 89.75390625,
1534
+ "epoch": 0.4896265560165975,
1535
+ "grad_norm": 8.052246239154032,
1536
+ "kl": 0.11083984375,
1537
+ "learning_rate": 5.103734439834024e-07,
1538
+ "loss": 0.0044,
1539
+ "reward": 1.140625,
1540
+ "reward_std": 0.19178494811058044,
1541
+ "rewards/accuracy_reward": 0.16796875,
1542
+ "rewards/format_reward": 0.97265625,
1543
+ "step": 118
1544
+ },
1545
+ {
1546
+ "completion_length": 91.37890625,
1547
+ "epoch": 0.49377593360995853,
1548
+ "grad_norm": 20.497960348017255,
1549
+ "kl": 0.11865234375,
1550
+ "learning_rate": 5.062240663900415e-07,
1551
+ "loss": 0.0047,
1552
+ "reward": 1.2421875,
1553
+ "reward_std": 0.3268205523490906,
1554
+ "rewards/accuracy_reward": 0.25390625,
1555
+ "rewards/format_reward": 0.98828125,
1556
+ "step": 119
1557
+ },
1558
+ {
1559
+ "completion_length": 109.734375,
1560
+ "epoch": 0.4979253112033195,
1561
+ "grad_norm": 5.486079926596014,
1562
+ "kl": 0.07568359375,
1563
+ "learning_rate": 5.020746887966804e-07,
1564
+ "loss": 0.003,
1565
+ "reward": 1.125,
1566
+ "reward_std": 0.2778772711753845,
1567
+ "rewards/accuracy_reward": 0.1875,
1568
+ "rewards/format_reward": 0.9375,
1569
+ "step": 120
1570
+ },
1571
+ {
1572
+ "completion_length": 91.80078125,
1573
+ "epoch": 0.5020746887966805,
1574
+ "grad_norm": 2.85121433781658,
1575
+ "kl": 0.09130859375,
1576
+ "learning_rate": 4.979253112033195e-07,
1577
+ "loss": 0.0036,
1578
+ "reward": 1.3359375,
1579
+ "reward_std": 0.21765941381454468,
1580
+ "rewards/accuracy_reward": 0.33984375,
1581
+ "rewards/format_reward": 0.99609375,
1582
+ "step": 121
1583
+ },
1584
+ {
1585
+ "completion_length": 108.34765625,
1586
+ "epoch": 0.5062240663900415,
1587
+ "grad_norm": 2.5487467805188415,
1588
+ "kl": 0.0703125,
1589
+ "learning_rate": 4.937759336099585e-07,
1590
+ "loss": 0.0028,
1591
+ "reward": 1.20703125,
1592
+ "reward_std": 0.24190281331539154,
1593
+ "rewards/accuracy_reward": 0.234375,
1594
+ "rewards/format_reward": 0.97265625,
1595
+ "step": 122
1596
+ },
1597
+ {
1598
+ "completion_length": 88.4296875,
1599
+ "epoch": 0.5103734439834025,
1600
+ "grad_norm": 9.052955326669567,
1601
+ "kl": 0.09326171875,
1602
+ "learning_rate": 4.896265560165974e-07,
1603
+ "loss": 0.0037,
1604
+ "reward": 1.30078125,
1605
+ "reward_std": 0.2738521099090576,
1606
+ "rewards/accuracy_reward": 0.3203125,
1607
+ "rewards/format_reward": 0.98046875,
1608
+ "step": 123
1609
+ },
1610
+ {
1611
+ "completion_length": 92.03125,
1612
+ "epoch": 0.5145228215767634,
1613
+ "grad_norm": 4.78722259192626,
1614
+ "kl": 0.10595703125,
1615
+ "learning_rate": 4.854771784232365e-07,
1616
+ "loss": 0.0042,
1617
+ "reward": 1.25,
1618
+ "reward_std": 0.2780294418334961,
1619
+ "rewards/accuracy_reward": 0.28515625,
1620
+ "rewards/format_reward": 0.96484375,
1621
+ "step": 124
1622
+ },
1623
+ {
1624
+ "completion_length": 90.37109375,
1625
+ "epoch": 0.5186721991701245,
1626
+ "grad_norm": 31.7592456228116,
1627
+ "kl": 0.1328125,
1628
+ "learning_rate": 4.813278008298756e-07,
1629
+ "loss": 0.0053,
1630
+ "reward": 1.26171875,
1631
+ "reward_std": 0.264590859413147,
1632
+ "rewards/accuracy_reward": 0.296875,
1633
+ "rewards/format_reward": 0.96484375,
1634
+ "step": 125
1635
+ },
1636
+ {
1637
+ "completion_length": 92.3203125,
1638
+ "epoch": 0.5228215767634855,
1639
+ "grad_norm": 3.431661013903984,
1640
+ "kl": 0.095703125,
1641
+ "learning_rate": 4.771784232365145e-07,
1642
+ "loss": 0.0038,
1643
+ "reward": 1.2890625,
1644
+ "reward_std": 0.2519586980342865,
1645
+ "rewards/accuracy_reward": 0.296875,
1646
+ "rewards/format_reward": 0.9921875,
1647
+ "step": 126
1648
+ },
1649
+ {
1650
+ "completion_length": 93.17578125,
1651
+ "epoch": 0.5269709543568465,
1652
+ "grad_norm": 4.2013084848725555,
1653
+ "kl": 0.091796875,
1654
+ "learning_rate": 4.7302904564315346e-07,
1655
+ "loss": 0.0037,
1656
+ "reward": 1.24609375,
1657
+ "reward_std": 0.22338411211967468,
1658
+ "rewards/accuracy_reward": 0.265625,
1659
+ "rewards/format_reward": 0.98046875,
1660
+ "step": 127
1661
+ },
1662
+ {
1663
+ "completion_length": 98.3359375,
1664
+ "epoch": 0.5311203319502075,
1665
+ "grad_norm": 10.80790694765271,
1666
+ "kl": 0.087890625,
1667
+ "learning_rate": 4.6887966804979253e-07,
1668
+ "loss": 0.0035,
1669
+ "reward": 1.171875,
1670
+ "reward_std": 0.2016046792268753,
1671
+ "rewards/accuracy_reward": 0.18359375,
1672
+ "rewards/format_reward": 0.98828125,
1673
+ "step": 128
1674
+ },
1675
+ {
1676
+ "completion_length": 102.2890625,
1677
+ "epoch": 0.5352697095435685,
1678
+ "grad_norm": 2.602202807896544,
1679
+ "kl": 0.08251953125,
1680
+ "learning_rate": 4.6473029045643154e-07,
1681
+ "loss": 0.0033,
1682
+ "reward": 1.2109375,
1683
+ "reward_std": 0.25826555490493774,
1684
+ "rewards/accuracy_reward": 0.24609375,
1685
+ "rewards/format_reward": 0.96484375,
1686
+ "step": 129
1687
+ },
1688
+ {
1689
+ "completion_length": 96.62109375,
1690
+ "epoch": 0.5394190871369294,
1691
+ "grad_norm": 9.873703703904674,
1692
+ "kl": 0.10888671875,
1693
+ "learning_rate": 4.605809128630705e-07,
1694
+ "loss": 0.0044,
1695
+ "reward": 1.22265625,
1696
+ "reward_std": 0.26187431812286377,
1697
+ "rewards/accuracy_reward": 0.25390625,
1698
+ "rewards/format_reward": 0.96875,
1699
+ "step": 130
1700
+ },
1701
+ {
1702
+ "completion_length": 98.99609375,
1703
+ "epoch": 0.5435684647302904,
1704
+ "grad_norm": 3.67428920521419,
1705
+ "kl": 0.0927734375,
1706
+ "learning_rate": 4.564315352697095e-07,
1707
+ "loss": 0.0037,
1708
+ "reward": 1.16796875,
1709
+ "reward_std": 0.2292679101228714,
1710
+ "rewards/accuracy_reward": 0.1953125,
1711
+ "rewards/format_reward": 0.97265625,
1712
+ "step": 131
1713
+ },
1714
+ {
1715
+ "completion_length": 92.67578125,
1716
+ "epoch": 0.5477178423236515,
1717
+ "grad_norm": 4.679154410147011,
1718
+ "kl": 0.08544921875,
1719
+ "learning_rate": 4.522821576763485e-07,
1720
+ "loss": 0.0034,
1721
+ "reward": 1.3359375,
1722
+ "reward_std": 0.35772189497947693,
1723
+ "rewards/accuracy_reward": 0.35546875,
1724
+ "rewards/format_reward": 0.98046875,
1725
+ "step": 132
1726
+ },
1727
+ {
1728
+ "completion_length": 106.16015625,
1729
+ "epoch": 0.5518672199170125,
1730
+ "grad_norm": 6.527275895854011,
1731
+ "kl": 0.07763671875,
1732
+ "learning_rate": 4.481327800829875e-07,
1733
+ "loss": 0.0031,
1734
+ "reward": 1.19140625,
1735
+ "reward_std": 0.2933124899864197,
1736
+ "rewards/accuracy_reward": 0.23046875,
1737
+ "rewards/format_reward": 0.9609375,
1738
+ "step": 133
1739
+ },
1740
+ {
1741
+ "completion_length": 98.29296875,
1742
+ "epoch": 0.5560165975103735,
1743
+ "grad_norm": 6.290852562410683,
1744
+ "kl": 0.08349609375,
1745
+ "learning_rate": 4.4398340248962654e-07,
1746
+ "loss": 0.0033,
1747
+ "reward": 1.24609375,
1748
+ "reward_std": 0.27056628465652466,
1749
+ "rewards/accuracy_reward": 0.27734375,
1750
+ "rewards/format_reward": 0.96875,
1751
+ "step": 134
1752
+ },
1753
+ {
1754
+ "completion_length": 103.40625,
1755
+ "epoch": 0.5601659751037344,
1756
+ "grad_norm": 9.043101857772628,
1757
+ "kl": 0.083984375,
1758
+ "learning_rate": 4.3983402489626555e-07,
1759
+ "loss": 0.0034,
1760
+ "reward": 1.3046875,
1761
+ "reward_std": 0.2771390676498413,
1762
+ "rewards/accuracy_reward": 0.32421875,
1763
+ "rewards/format_reward": 0.98046875,
1764
+ "step": 135
1765
+ },
1766
+ {
1767
+ "completion_length": 103.0078125,
1768
+ "epoch": 0.5643153526970954,
1769
+ "grad_norm": 4.096567104156379,
1770
+ "kl": 0.08349609375,
1771
+ "learning_rate": 4.3568464730290456e-07,
1772
+ "loss": 0.0033,
1773
+ "reward": 1.20703125,
1774
+ "reward_std": 0.23877452313899994,
1775
+ "rewards/accuracy_reward": 0.24609375,
1776
+ "rewards/format_reward": 0.9609375,
1777
+ "step": 136
1778
+ },
1779
+ {
1780
+ "completion_length": 98.453125,
1781
+ "epoch": 0.5684647302904564,
1782
+ "grad_norm": 5.621101251975948,
1783
+ "kl": 0.1015625,
1784
+ "learning_rate": 4.3153526970954357e-07,
1785
+ "loss": 0.0041,
1786
+ "reward": 1.19921875,
1787
+ "reward_std": 0.27381569147109985,
1788
+ "rewards/accuracy_reward": 0.25,
1789
+ "rewards/format_reward": 0.94921875,
1790
+ "step": 137
1791
+ },
1792
+ {
1793
+ "completion_length": 110.04296875,
1794
+ "epoch": 0.5726141078838174,
1795
+ "grad_norm": 8.904930677056841,
1796
+ "kl": 0.0712890625,
1797
+ "learning_rate": 4.273858921161825e-07,
1798
+ "loss": 0.0029,
1799
+ "reward": 1.2109375,
1800
+ "reward_std": 0.3127846121788025,
1801
+ "rewards/accuracy_reward": 0.2578125,
1802
+ "rewards/format_reward": 0.953125,
1803
+ "step": 138
1804
+ },
1805
+ {
1806
+ "completion_length": 107.1875,
1807
+ "epoch": 0.5767634854771784,
1808
+ "grad_norm": 4.817083135230505,
1809
+ "kl": 0.07666015625,
1810
+ "learning_rate": 4.2323651452282153e-07,
1811
+ "loss": 0.0031,
1812
+ "reward": 1.16796875,
1813
+ "reward_std": 0.25475409626960754,
1814
+ "rewards/accuracy_reward": 0.19921875,
1815
+ "rewards/format_reward": 0.96875,
1816
+ "step": 139
1817
+ },
1818
+ {
1819
+ "completion_length": 105.25,
1820
+ "epoch": 0.5809128630705395,
1821
+ "grad_norm": 29.934647705971432,
1822
+ "kl": 0.3984375,
1823
+ "learning_rate": 4.190871369294606e-07,
1824
+ "loss": 0.016,
1825
+ "reward": 1.30859375,
1826
+ "reward_std": 0.35114049911499023,
1827
+ "rewards/accuracy_reward": 0.33984375,
1828
+ "rewards/format_reward": 0.96875,
1829
+ "step": 140
1830
+ },
1831
+ {
1832
+ "completion_length": 100.92578125,
1833
+ "epoch": 0.5850622406639004,
1834
+ "grad_norm": 2.5340527761032625,
1835
+ "kl": 0.0830078125,
1836
+ "learning_rate": 4.149377593360996e-07,
1837
+ "loss": 0.0033,
1838
+ "reward": 1.2109375,
1839
+ "reward_std": 0.2652069628238678,
1840
+ "rewards/accuracy_reward": 0.234375,
1841
+ "rewards/format_reward": 0.9765625,
1842
+ "step": 141
1843
+ },
1844
+ {
1845
+ "completion_length": 101.79296875,
1846
+ "epoch": 0.5892116182572614,
1847
+ "grad_norm": 3.363293811701697,
1848
+ "kl": 0.08984375,
1849
+ "learning_rate": 4.1078838174273857e-07,
1850
+ "loss": 0.0036,
1851
+ "reward": 1.2421875,
1852
+ "reward_std": 0.262579083442688,
1853
+ "rewards/accuracy_reward": 0.28125,
1854
+ "rewards/format_reward": 0.9609375,
1855
+ "step": 142
1856
+ },
1857
+ {
1858
+ "completion_length": 98.31640625,
1859
+ "epoch": 0.5933609958506224,
1860
+ "grad_norm": 3.049695551614608,
1861
+ "kl": 0.091796875,
1862
+ "learning_rate": 4.066390041493776e-07,
1863
+ "loss": 0.0037,
1864
+ "reward": 1.19140625,
1865
+ "reward_std": 0.2985348701477051,
1866
+ "rewards/accuracy_reward": 0.234375,
1867
+ "rewards/format_reward": 0.95703125,
1868
+ "step": 143
1869
+ },
1870
+ {
1871
+ "completion_length": 97.63671875,
1872
+ "epoch": 0.5975103734439834,
1873
+ "grad_norm": 4.921448840015921,
1874
+ "kl": 0.08349609375,
1875
+ "learning_rate": 4.024896265560166e-07,
1876
+ "loss": 0.0033,
1877
+ "reward": 1.33984375,
1878
+ "reward_std": 0.27990859746932983,
1879
+ "rewards/accuracy_reward": 0.3515625,
1880
+ "rewards/format_reward": 0.98828125,
1881
+ "step": 144
1882
+ },
1883
+ {
1884
+ "completion_length": 119.609375,
1885
+ "epoch": 0.6016597510373444,
1886
+ "grad_norm": 2.821821714985559,
1887
+ "kl": 0.06884765625,
1888
+ "learning_rate": 3.9834024896265554e-07,
1889
+ "loss": 0.0027,
1890
+ "reward": 1.2578125,
1891
+ "reward_std": 0.3430861532688141,
1892
+ "rewards/accuracy_reward": 0.30078125,
1893
+ "rewards/format_reward": 0.95703125,
1894
+ "step": 145
1895
+ },
1896
+ {
1897
+ "completion_length": 100.03125,
1898
+ "epoch": 0.6058091286307054,
1899
+ "grad_norm": 2.9588689744644654,
1900
+ "kl": 0.103515625,
1901
+ "learning_rate": 3.9419087136929455e-07,
1902
+ "loss": 0.0041,
1903
+ "reward": 1.20703125,
1904
+ "reward_std": 0.35439443588256836,
1905
+ "rewards/accuracy_reward": 0.2734375,
1906
+ "rewards/format_reward": 0.93359375,
1907
+ "step": 146
1908
+ },
1909
+ {
1910
+ "completion_length": 106.19140625,
1911
+ "epoch": 0.6099585062240664,
1912
+ "grad_norm": 5.79280616422922,
1913
+ "kl": 0.125,
1914
+ "learning_rate": 3.900414937759336e-07,
1915
+ "loss": 0.005,
1916
+ "reward": 1.203125,
1917
+ "reward_std": 0.29194867610931396,
1918
+ "rewards/accuracy_reward": 0.2421875,
1919
+ "rewards/format_reward": 0.9609375,
1920
+ "step": 147
1921
+ },
1922
+ {
1923
+ "completion_length": 95.98828125,
1924
+ "epoch": 0.6141078838174274,
1925
+ "grad_norm": 5.4671468471721605,
1926
+ "kl": 0.10986328125,
1927
+ "learning_rate": 3.8589211618257263e-07,
1928
+ "loss": 0.0044,
1929
+ "reward": 1.22265625,
1930
+ "reward_std": 0.2797732949256897,
1931
+ "rewards/accuracy_reward": 0.23828125,
1932
+ "rewards/format_reward": 0.984375,
1933
+ "step": 148
1934
+ },
1935
+ {
1936
+ "completion_length": 88.03515625,
1937
+ "epoch": 0.6182572614107884,
1938
+ "grad_norm": 8.553849856772748,
1939
+ "kl": 0.11376953125,
1940
+ "learning_rate": 3.817427385892116e-07,
1941
+ "loss": 0.0045,
1942
+ "reward": 1.265625,
1943
+ "reward_std": 0.30274513363838196,
1944
+ "rewards/accuracy_reward": 0.30078125,
1945
+ "rewards/format_reward": 0.96484375,
1946
+ "step": 149
1947
+ },
1948
+ {
1949
+ "completion_length": 107.9140625,
1950
+ "epoch": 0.6224066390041494,
1951
+ "grad_norm": 4.437784186558576,
1952
+ "kl": 0.08349609375,
1953
+ "learning_rate": 3.775933609958506e-07,
1954
+ "loss": 0.0033,
1955
+ "reward": 1.2890625,
1956
+ "reward_std": 0.3589634895324707,
1957
+ "rewards/accuracy_reward": 0.3203125,
1958
+ "rewards/format_reward": 0.96875,
1959
+ "step": 150
1960
+ },
1961
+ {
1962
+ "completion_length": 91.25,
1963
+ "epoch": 0.6265560165975104,
1964
+ "grad_norm": 7.218676225343139,
1965
+ "kl": 0.09130859375,
1966
+ "learning_rate": 3.734439834024896e-07,
1967
+ "loss": 0.0037,
1968
+ "reward": 1.2265625,
1969
+ "reward_std": 0.2923767566680908,
1970
+ "rewards/accuracy_reward": 0.25390625,
1971
+ "rewards/format_reward": 0.97265625,
1972
+ "step": 151
1973
+ },
1974
+ {
1975
+ "completion_length": 102.1796875,
1976
+ "epoch": 0.6307053941908713,
1977
+ "grad_norm": 5.625873375289916,
1978
+ "kl": 0.08251953125,
1979
+ "learning_rate": 3.692946058091286e-07,
1980
+ "loss": 0.0033,
1981
+ "reward": 1.26953125,
1982
+ "reward_std": 0.28951701521873474,
1983
+ "rewards/accuracy_reward": 0.296875,
1984
+ "rewards/format_reward": 0.97265625,
1985
+ "step": 152
1986
+ },
1987
+ {
1988
+ "completion_length": 94.6875,
1989
+ "epoch": 0.6348547717842323,
1990
+ "grad_norm": 3.3046695270707143,
1991
+ "kl": 0.08740234375,
1992
+ "learning_rate": 3.6514522821576757e-07,
1993
+ "loss": 0.0035,
1994
+ "reward": 1.20703125,
1995
+ "reward_std": 0.3152885437011719,
1996
+ "rewards/accuracy_reward": 0.2421875,
1997
+ "rewards/format_reward": 0.96484375,
1998
+ "step": 153
1999
+ },
2000
+ {
2001
+ "completion_length": 93.8359375,
2002
+ "epoch": 0.6390041493775933,
2003
+ "grad_norm": 3.2380098166032174,
2004
+ "kl": 0.0927734375,
2005
+ "learning_rate": 3.6099585062240664e-07,
2006
+ "loss": 0.0037,
2007
+ "reward": 1.41015625,
2008
+ "reward_std": 0.3835912346839905,
2009
+ "rewards/accuracy_reward": 0.421875,
2010
+ "rewards/format_reward": 0.98828125,
2011
+ "step": 154
2012
+ },
2013
+ {
2014
+ "completion_length": 100.3828125,
2015
+ "epoch": 0.6431535269709544,
2016
+ "grad_norm": 3.3134631461874555,
2017
+ "kl": 0.091796875,
2018
+ "learning_rate": 3.5684647302904565e-07,
2019
+ "loss": 0.0037,
2020
+ "reward": 1.21875,
2021
+ "reward_std": 0.36876800656318665,
2022
+ "rewards/accuracy_reward": 0.25390625,
2023
+ "rewards/format_reward": 0.96484375,
2024
+ "step": 155
2025
+ },
2026
+ {
2027
+ "completion_length": 85.98828125,
2028
+ "epoch": 0.6473029045643154,
2029
+ "grad_norm": 8.891623678352106,
2030
+ "kl": 0.1044921875,
2031
+ "learning_rate": 3.5269709543568466e-07,
2032
+ "loss": 0.0042,
2033
+ "reward": 1.34375,
2034
+ "reward_std": 0.2681604027748108,
2035
+ "rewards/accuracy_reward": 0.3515625,
2036
+ "rewards/format_reward": 0.9921875,
2037
+ "step": 156
2038
+ },
2039
+ {
2040
+ "completion_length": 96.3125,
2041
+ "epoch": 0.6514522821576764,
2042
+ "grad_norm": 10.997826794239984,
2043
+ "kl": 0.103515625,
2044
+ "learning_rate": 3.485477178423236e-07,
2045
+ "loss": 0.0041,
2046
+ "reward": 1.30859375,
2047
+ "reward_std": 0.30442675948143005,
2048
+ "rewards/accuracy_reward": 0.33203125,
2049
+ "rewards/format_reward": 0.9765625,
2050
+ "step": 157
2051
+ },
2052
+ {
2053
+ "completion_length": 97.25,
2054
+ "epoch": 0.6556016597510373,
2055
+ "grad_norm": 15.501954515999833,
2056
+ "kl": 0.11181640625,
2057
+ "learning_rate": 3.443983402489626e-07,
2058
+ "loss": 0.0045,
2059
+ "reward": 1.24609375,
2060
+ "reward_std": 0.3243793845176697,
2061
+ "rewards/accuracy_reward": 0.2890625,
2062
+ "rewards/format_reward": 0.95703125,
2063
+ "step": 158
2064
+ },
2065
+ {
2066
+ "completion_length": 85.5546875,
2067
+ "epoch": 0.6597510373443983,
2068
+ "grad_norm": 15.699833790155175,
2069
+ "kl": 0.125,
2070
+ "learning_rate": 3.4024896265560163e-07,
2071
+ "loss": 0.005,
2072
+ "reward": 1.2421875,
2073
+ "reward_std": 0.2799358367919922,
2074
+ "rewards/accuracy_reward": 0.265625,
2075
+ "rewards/format_reward": 0.9765625,
2076
+ "step": 159
2077
+ },
2078
+ {
2079
+ "completion_length": 87.35546875,
2080
+ "epoch": 0.6639004149377593,
2081
+ "grad_norm": 21.010504513986813,
2082
+ "kl": 0.09423828125,
2083
+ "learning_rate": 3.360995850622407e-07,
2084
+ "loss": 0.0038,
2085
+ "reward": 1.1953125,
2086
+ "reward_std": 0.19621142745018005,
2087
+ "rewards/accuracy_reward": 0.203125,
2088
+ "rewards/format_reward": 0.9921875,
2089
+ "step": 160
2090
+ },
2091
+ {
2092
+ "completion_length": 79.609375,
2093
+ "epoch": 0.6680497925311203,
2094
+ "grad_norm": 15.76259223021215,
2095
+ "kl": 0.12890625,
2096
+ "learning_rate": 3.3195020746887966e-07,
2097
+ "loss": 0.0052,
2098
+ "reward": 1.28515625,
2099
+ "reward_std": 0.2734532654285431,
2100
+ "rewards/accuracy_reward": 0.30859375,
2101
+ "rewards/format_reward": 0.9765625,
2102
+ "step": 161
2103
+ },
2104
+ {
2105
+ "completion_length": 92.03515625,
2106
+ "epoch": 0.6721991701244814,
2107
+ "grad_norm": 10.404250366698443,
2108
+ "kl": 0.11865234375,
2109
+ "learning_rate": 3.2780082987551867e-07,
2110
+ "loss": 0.0047,
2111
+ "reward": 1.12890625,
2112
+ "reward_std": 0.13782215118408203,
2113
+ "rewards/accuracy_reward": 0.14453125,
2114
+ "rewards/format_reward": 0.984375,
2115
+ "step": 162
2116
+ },
2117
+ {
2118
+ "completion_length": 87.2421875,
2119
+ "epoch": 0.6763485477178424,
2120
+ "grad_norm": 14.551252603892712,
2121
+ "kl": 0.09912109375,
2122
+ "learning_rate": 3.236514522821577e-07,
2123
+ "loss": 0.004,
2124
+ "reward": 1.2421875,
2125
+ "reward_std": 0.27508556842803955,
2126
+ "rewards/accuracy_reward": 0.2578125,
2127
+ "rewards/format_reward": 0.984375,
2128
+ "step": 163
2129
+ },
2130
+ {
2131
+ "completion_length": 86.05078125,
2132
+ "epoch": 0.6804979253112033,
2133
+ "grad_norm": 19.037085273013254,
2134
+ "kl": 0.1513671875,
2135
+ "learning_rate": 3.1950207468879663e-07,
2136
+ "loss": 0.006,
2137
+ "reward": 1.39453125,
2138
+ "reward_std": 0.3236626982688904,
2139
+ "rewards/accuracy_reward": 0.40234375,
2140
+ "rewards/format_reward": 0.9921875,
2141
+ "step": 164
2142
+ },
2143
+ {
2144
+ "completion_length": 85.9609375,
2145
+ "epoch": 0.6846473029045643,
2146
+ "grad_norm": 43.15683291911658,
2147
+ "kl": 0.1416015625,
2148
+ "learning_rate": 3.1535269709543564e-07,
2149
+ "loss": 0.0057,
2150
+ "reward": 1.30859375,
2151
+ "reward_std": 0.2828989326953888,
2152
+ "rewards/accuracy_reward": 0.33984375,
2153
+ "rewards/format_reward": 0.96875,
2154
+ "step": 165
2155
+ },
2156
+ {
2157
+ "completion_length": 88.8671875,
2158
+ "epoch": 0.6887966804979253,
2159
+ "grad_norm": 10.572313497625037,
2160
+ "kl": 0.0927734375,
2161
+ "learning_rate": 3.1120331950207465e-07,
2162
+ "loss": 0.0037,
2163
+ "reward": 1.34375,
2164
+ "reward_std": 0.2745204567909241,
2165
+ "rewards/accuracy_reward": 0.359375,
2166
+ "rewards/format_reward": 0.984375,
2167
+ "step": 166
2168
+ },
2169
+ {
2170
+ "completion_length": 93.8125,
2171
+ "epoch": 0.6929460580912863,
2172
+ "grad_norm": 5.703362063681082,
2173
+ "kl": 0.103515625,
2174
+ "learning_rate": 3.070539419087137e-07,
2175
+ "loss": 0.0041,
2176
+ "reward": 1.1796875,
2177
+ "reward_std": 0.24057602882385254,
2178
+ "rewards/accuracy_reward": 0.1953125,
2179
+ "rewards/format_reward": 0.984375,
2180
+ "step": 167
2181
+ },
2182
+ {
2183
+ "completion_length": 88.37109375,
2184
+ "epoch": 0.6970954356846473,
2185
+ "grad_norm": 26054.768735426984,
2186
+ "kl": 3.203125,
2187
+ "learning_rate": 3.029045643153527e-07,
2188
+ "loss": 0.1277,
2189
+ "reward": 1.234375,
2190
+ "reward_std": 0.22063545882701874,
2191
+ "rewards/accuracy_reward": 0.25,
2192
+ "rewards/format_reward": 0.984375,
2193
+ "step": 168
2194
+ },
2195
+ {
2196
+ "completion_length": 94.67578125,
2197
+ "epoch": 0.7012448132780082,
2198
+ "grad_norm": 15.618598784917781,
2199
+ "kl": 0.10400390625,
2200
+ "learning_rate": 2.987551867219917e-07,
2201
+ "loss": 0.0042,
2202
+ "reward": 1.2890625,
2203
+ "reward_std": 0.27328526973724365,
2204
+ "rewards/accuracy_reward": 0.30078125,
2205
+ "rewards/format_reward": 0.98828125,
2206
+ "step": 169
2207
+ },
2208
+ {
2209
+ "completion_length": 99.70703125,
2210
+ "epoch": 0.7053941908713693,
2211
+ "grad_norm": 9.871899460079366,
2212
+ "kl": 0.09521484375,
2213
+ "learning_rate": 2.946058091286307e-07,
2214
+ "loss": 0.0038,
2215
+ "reward": 1.3671875,
2216
+ "reward_std": 0.3782796263694763,
2217
+ "rewards/accuracy_reward": 0.38671875,
2218
+ "rewards/format_reward": 0.98046875,
2219
+ "step": 170
2220
+ },
2221
+ {
2222
+ "completion_length": 80.71875,
2223
+ "epoch": 0.7095435684647303,
2224
+ "grad_norm": 18.124016004514953,
2225
+ "kl": 0.10546875,
2226
+ "learning_rate": 2.904564315352697e-07,
2227
+ "loss": 0.0042,
2228
+ "reward": 1.21875,
2229
+ "reward_std": 0.22859051823616028,
2230
+ "rewards/accuracy_reward": 0.2265625,
2231
+ "rewards/format_reward": 0.9921875,
2232
+ "step": 171
2233
+ },
2234
+ {
2235
+ "completion_length": 95.65625,
2236
+ "epoch": 0.7136929460580913,
2237
+ "grad_norm": 11.410453654872125,
2238
+ "kl": 0.08837890625,
2239
+ "learning_rate": 2.8630705394190866e-07,
2240
+ "loss": 0.0035,
2241
+ "reward": 1.265625,
2242
+ "reward_std": 0.3315829634666443,
2243
+ "rewards/accuracy_reward": 0.28515625,
2244
+ "rewards/format_reward": 0.98046875,
2245
+ "step": 172
2246
+ },
2247
+ {
2248
+ "completion_length": 84.04296875,
2249
+ "epoch": 0.7178423236514523,
2250
+ "grad_norm": 11.679683395107324,
2251
+ "kl": 0.1162109375,
2252
+ "learning_rate": 2.821576763485477e-07,
2253
+ "loss": 0.0046,
2254
+ "reward": 1.2578125,
2255
+ "reward_std": 0.2511623501777649,
2256
+ "rewards/accuracy_reward": 0.265625,
2257
+ "rewards/format_reward": 0.9921875,
2258
+ "step": 173
2259
+ },
2260
+ {
2261
+ "completion_length": 86.625,
2262
+ "epoch": 0.7219917012448133,
2263
+ "grad_norm": 12.07785638477025,
2264
+ "kl": 0.11083984375,
2265
+ "learning_rate": 2.7800829875518674e-07,
2266
+ "loss": 0.0044,
2267
+ "reward": 1.22265625,
2268
+ "reward_std": 0.17005667090415955,
2269
+ "rewards/accuracy_reward": 0.23828125,
2270
+ "rewards/format_reward": 0.984375,
2271
+ "step": 174
2272
+ },
2273
+ {
2274
+ "completion_length": 105.43359375,
2275
+ "epoch": 0.7261410788381742,
2276
+ "grad_norm": 8.597610653971167,
2277
+ "kl": 0.08984375,
2278
+ "learning_rate": 2.7385892116182575e-07,
2279
+ "loss": 0.0036,
2280
+ "reward": 1.29296875,
2281
+ "reward_std": 0.2580205202102661,
2282
+ "rewards/accuracy_reward": 0.3359375,
2283
+ "rewards/format_reward": 0.95703125,
2284
+ "step": 175
2285
+ },
2286
+ {
2287
+ "completion_length": 91.1171875,
2288
+ "epoch": 0.7302904564315352,
2289
+ "grad_norm": 10.411659860843175,
2290
+ "kl": 0.134765625,
2291
+ "learning_rate": 2.697095435684647e-07,
2292
+ "loss": 0.0054,
2293
+ "reward": 1.28125,
2294
+ "reward_std": 0.33533939719200134,
2295
+ "rewards/accuracy_reward": 0.30859375,
2296
+ "rewards/format_reward": 0.97265625,
2297
+ "step": 176
2298
+ },
2299
+ {
2300
+ "completion_length": 84.40625,
2301
+ "epoch": 0.7344398340248963,
2302
+ "grad_norm": 8.502997007157745,
2303
+ "kl": 0.09716796875,
2304
+ "learning_rate": 2.655601659751037e-07,
2305
+ "loss": 0.0039,
2306
+ "reward": 1.3203125,
2307
+ "reward_std": 0.303774893283844,
2308
+ "rewards/accuracy_reward": 0.3203125,
2309
+ "rewards/format_reward": 1.0,
2310
+ "step": 177
2311
+ },
2312
+ {
2313
+ "completion_length": 80.4296875,
2314
+ "epoch": 0.7385892116182573,
2315
+ "grad_norm": 10.088884677713335,
2316
+ "kl": 0.111328125,
2317
+ "learning_rate": 2.614107883817427e-07,
2318
+ "loss": 0.0045,
2319
+ "reward": 1.24609375,
2320
+ "reward_std": 0.27983221411705017,
2321
+ "rewards/accuracy_reward": 0.25390625,
2322
+ "rewards/format_reward": 0.9921875,
2323
+ "step": 178
2324
+ },
2325
+ {
2326
+ "completion_length": 102.3359375,
2327
+ "epoch": 0.7427385892116183,
2328
+ "grad_norm": 7.955033668582297,
2329
+ "kl": 0.0859375,
2330
+ "learning_rate": 2.572614107883817e-07,
2331
+ "loss": 0.0034,
2332
+ "reward": 1.2578125,
2333
+ "reward_std": 0.1971781998872757,
2334
+ "rewards/accuracy_reward": 0.26953125,
2335
+ "rewards/format_reward": 0.98828125,
2336
+ "step": 179
2337
+ },
2338
+ {
2339
+ "completion_length": 91.73046875,
2340
+ "epoch": 0.7468879668049793,
2341
+ "grad_norm": 3.07504994450314,
2342
+ "kl": 0.09716796875,
2343
+ "learning_rate": 2.5311203319502074e-07,
2344
+ "loss": 0.0039,
2345
+ "reward": 1.31640625,
2346
+ "reward_std": 0.23474639654159546,
2347
+ "rewards/accuracy_reward": 0.328125,
2348
+ "rewards/format_reward": 0.98828125,
2349
+ "step": 180
2350
+ },
2351
+ {
2352
+ "completion_length": 89.3984375,
2353
+ "epoch": 0.7510373443983402,
2354
+ "grad_norm": 5.922630830808792,
2355
+ "kl": 0.12060546875,
2356
+ "learning_rate": 2.4896265560165975e-07,
2357
+ "loss": 0.0048,
2358
+ "reward": 1.3828125,
2359
+ "reward_std": 0.2881060838699341,
2360
+ "rewards/accuracy_reward": 0.390625,
2361
+ "rewards/format_reward": 0.9921875,
2362
+ "step": 181
2363
+ },
2364
+ {
2365
+ "completion_length": 98.4296875,
2366
+ "epoch": 0.7551867219917012,
2367
+ "grad_norm": 5.611561605457396,
2368
+ "kl": 0.099609375,
2369
+ "learning_rate": 2.448132780082987e-07,
2370
+ "loss": 0.004,
2371
+ "reward": 1.1953125,
2372
+ "reward_std": 0.26515352725982666,
2373
+ "rewards/accuracy_reward": 0.21875,
2374
+ "rewards/format_reward": 0.9765625,
2375
+ "step": 182
2376
+ },
2377
+ {
2378
+ "completion_length": 95.12890625,
2379
+ "epoch": 0.7593360995850622,
2380
+ "grad_norm": 3.07356690502102,
2381
+ "kl": 0.1044921875,
2382
+ "learning_rate": 2.406639004149378e-07,
2383
+ "loss": 0.0042,
2384
+ "reward": 1.1640625,
2385
+ "reward_std": 0.23651200532913208,
2386
+ "rewards/accuracy_reward": 0.1953125,
2387
+ "rewards/format_reward": 0.96875,
2388
+ "step": 183
2389
+ },
2390
+ {
2391
+ "completion_length": 89.78125,
2392
+ "epoch": 0.7634854771784232,
2393
+ "grad_norm": 5.291830044415155,
2394
+ "kl": 0.107421875,
2395
+ "learning_rate": 2.3651452282157673e-07,
2396
+ "loss": 0.0043,
2397
+ "reward": 1.3046875,
2398
+ "reward_std": 0.2729809880256653,
2399
+ "rewards/accuracy_reward": 0.31640625,
2400
+ "rewards/format_reward": 0.98828125,
2401
+ "step": 184
2402
+ },
2403
+ {
2404
+ "completion_length": 96.91796875,
2405
+ "epoch": 0.7676348547717843,
2406
+ "grad_norm": 6.323500099655262,
2407
+ "kl": 0.0947265625,
2408
+ "learning_rate": 2.3236514522821577e-07,
2409
+ "loss": 0.0038,
2410
+ "reward": 1.3125,
2411
+ "reward_std": 0.29040926694869995,
2412
+ "rewards/accuracy_reward": 0.3359375,
2413
+ "rewards/format_reward": 0.9765625,
2414
+ "step": 185
2415
+ },
2416
+ {
2417
+ "completion_length": 85.296875,
2418
+ "epoch": 0.7717842323651453,
2419
+ "grad_norm": 38.28802098479183,
2420
+ "kl": 0.11083984375,
2421
+ "learning_rate": 2.2821576763485475e-07,
2422
+ "loss": 0.0044,
2423
+ "reward": 1.21875,
2424
+ "reward_std": 0.2543177008628845,
2425
+ "rewards/accuracy_reward": 0.24609375,
2426
+ "rewards/format_reward": 0.97265625,
2427
+ "step": 186
2428
+ },
2429
+ {
2430
+ "completion_length": 92.23046875,
2431
+ "epoch": 0.7759336099585062,
2432
+ "grad_norm": 3.3424642787888916,
2433
+ "kl": 0.09375,
2434
+ "learning_rate": 2.2406639004149376e-07,
2435
+ "loss": 0.0037,
2436
+ "reward": 1.30859375,
2437
+ "reward_std": 0.2530517578125,
2438
+ "rewards/accuracy_reward": 0.34765625,
2439
+ "rewards/format_reward": 0.9609375,
2440
+ "step": 187
2441
+ },
2442
+ {
2443
+ "completion_length": 99.76171875,
2444
+ "epoch": 0.7800829875518672,
2445
+ "grad_norm": 4.333334591818117,
2446
+ "kl": 0.0927734375,
2447
+ "learning_rate": 2.1991701244813277e-07,
2448
+ "loss": 0.0037,
2449
+ "reward": 1.37109375,
2450
+ "reward_std": 0.2535189092159271,
2451
+ "rewards/accuracy_reward": 0.390625,
2452
+ "rewards/format_reward": 0.98046875,
2453
+ "step": 188
2454
+ },
2455
+ {
2456
+ "completion_length": 94.41796875,
2457
+ "epoch": 0.7842323651452282,
2458
+ "grad_norm": 5.581784795886384,
2459
+ "kl": 0.10693359375,
2460
+ "learning_rate": 2.1576763485477178e-07,
2461
+ "loss": 0.0043,
2462
+ "reward": 1.23046875,
2463
+ "reward_std": 0.27355122566223145,
2464
+ "rewards/accuracy_reward": 0.26171875,
2465
+ "rewards/format_reward": 0.96875,
2466
+ "step": 189
2467
+ },
2468
+ {
2469
+ "completion_length": 99.2109375,
2470
+ "epoch": 0.7883817427385892,
2471
+ "grad_norm": 5.627278869348173,
2472
+ "kl": 0.09130859375,
2473
+ "learning_rate": 2.1161825726141077e-07,
2474
+ "loss": 0.0036,
2475
+ "reward": 1.30859375,
2476
+ "reward_std": 0.26744574308395386,
2477
+ "rewards/accuracy_reward": 0.34765625,
2478
+ "rewards/format_reward": 0.9609375,
2479
+ "step": 190
2480
+ },
2481
+ {
2482
+ "completion_length": 92.41796875,
2483
+ "epoch": 0.7925311203319502,
2484
+ "grad_norm": 5.131313447662913,
2485
+ "kl": 0.095703125,
2486
+ "learning_rate": 2.074688796680498e-07,
2487
+ "loss": 0.0038,
2488
+ "reward": 1.28515625,
2489
+ "reward_std": 0.3070391118526459,
2490
+ "rewards/accuracy_reward": 0.3046875,
2491
+ "rewards/format_reward": 0.98046875,
2492
+ "step": 191
2493
+ },
2494
+ {
2495
+ "completion_length": 100.51953125,
2496
+ "epoch": 0.7966804979253111,
2497
+ "grad_norm": 4.031558423340292,
2498
+ "kl": 0.0771484375,
2499
+ "learning_rate": 2.033195020746888e-07,
2500
+ "loss": 0.0031,
2501
+ "reward": 1.32421875,
2502
+ "reward_std": 0.220160573720932,
2503
+ "rewards/accuracy_reward": 0.34765625,
2504
+ "rewards/format_reward": 0.9765625,
2505
+ "step": 192
2506
+ },
2507
+ {
2508
+ "completion_length": 95.21484375,
2509
+ "epoch": 0.8008298755186722,
2510
+ "grad_norm": 7.853584345992108,
2511
+ "kl": 0.11669921875,
2512
+ "learning_rate": 1.9917012448132777e-07,
2513
+ "loss": 0.0047,
2514
+ "reward": 1.203125,
2515
+ "reward_std": 0.2865522503852844,
2516
+ "rewards/accuracy_reward": 0.234375,
2517
+ "rewards/format_reward": 0.96875,
2518
+ "step": 193
2519
+ },
2520
+ {
2521
+ "completion_length": 101.75,
2522
+ "epoch": 0.8049792531120332,
2523
+ "grad_norm": 2.8908709714738614,
2524
+ "kl": 0.08837890625,
2525
+ "learning_rate": 1.950207468879668e-07,
2526
+ "loss": 0.0035,
2527
+ "reward": 1.234375,
2528
+ "reward_std": 0.34296295046806335,
2529
+ "rewards/accuracy_reward": 0.2890625,
2530
+ "rewards/format_reward": 0.9453125,
2531
+ "step": 194
2532
+ },
2533
+ {
2534
+ "completion_length": 90.21875,
2535
+ "epoch": 0.8091286307053942,
2536
+ "grad_norm": 2.098330717758711,
2537
+ "kl": 0.09228515625,
2538
+ "learning_rate": 1.908713692946058e-07,
2539
+ "loss": 0.0037,
2540
+ "reward": 1.2265625,
2541
+ "reward_std": 0.2507816553115845,
2542
+ "rewards/accuracy_reward": 0.23828125,
2543
+ "rewards/format_reward": 0.98828125,
2544
+ "step": 195
2545
+ },
2546
+ {
2547
+ "completion_length": 109.3828125,
2548
+ "epoch": 0.8132780082987552,
2549
+ "grad_norm": 2349.258527115438,
2550
+ "kl": 6.90625,
2551
+ "learning_rate": 1.867219917012448e-07,
2552
+ "loss": 0.2761,
2553
+ "reward": 1.21484375,
2554
+ "reward_std": 0.264018177986145,
2555
+ "rewards/accuracy_reward": 0.2421875,
2556
+ "rewards/format_reward": 0.97265625,
2557
+ "step": 196
2558
+ },
2559
+ {
2560
+ "completion_length": 96.6640625,
2561
+ "epoch": 0.8174273858921162,
2562
+ "grad_norm": 16.535509899854667,
2563
+ "kl": 0.1025390625,
2564
+ "learning_rate": 1.8257261410788379e-07,
2565
+ "loss": 0.0041,
2566
+ "reward": 1.24609375,
2567
+ "reward_std": 0.3564358055591583,
2568
+ "rewards/accuracy_reward": 0.29296875,
2569
+ "rewards/format_reward": 0.953125,
2570
+ "step": 197
2571
+ },
2572
+ {
2573
+ "completion_length": 88.40234375,
2574
+ "epoch": 0.8215767634854771,
2575
+ "grad_norm": 7.009787448907159,
2576
+ "kl": 0.11181640625,
2577
+ "learning_rate": 1.7842323651452282e-07,
2578
+ "loss": 0.0045,
2579
+ "reward": 1.37890625,
2580
+ "reward_std": 0.3150339424610138,
2581
+ "rewards/accuracy_reward": 0.41015625,
2582
+ "rewards/format_reward": 0.96875,
2583
+ "step": 198
2584
+ },
2585
+ {
2586
+ "completion_length": 101.0,
2587
+ "epoch": 0.8257261410788381,
2588
+ "grad_norm": 1.4173394259733807,
2589
+ "kl": 0.08544921875,
2590
+ "learning_rate": 1.742738589211618e-07,
2591
+ "loss": 0.0034,
2592
+ "reward": 1.2265625,
2593
+ "reward_std": 0.2616804838180542,
2594
+ "rewards/accuracy_reward": 0.2578125,
2595
+ "rewards/format_reward": 0.96875,
2596
+ "step": 199
2597
+ },
2598
+ {
2599
+ "completion_length": 87.8828125,
2600
+ "epoch": 0.8298755186721992,
2601
+ "grad_norm": 4.4140973894843825,
2602
+ "kl": 0.09228515625,
2603
+ "learning_rate": 1.7012448132780082e-07,
2604
+ "loss": 0.0037,
2605
+ "reward": 1.32421875,
2606
+ "reward_std": 0.2538624703884125,
2607
+ "rewards/accuracy_reward": 0.328125,
2608
+ "rewards/format_reward": 0.99609375,
2609
+ "step": 200
2610
+ },
2611
+ {
2612
+ "completion_length": 99.31640625,
2613
+ "epoch": 0.8340248962655602,
2614
+ "grad_norm": 2.698781998865515,
2615
+ "kl": 0.07275390625,
2616
+ "learning_rate": 1.6597510373443983e-07,
2617
+ "loss": 0.0029,
2618
+ "reward": 1.2734375,
2619
+ "reward_std": 0.3443642854690552,
2620
+ "rewards/accuracy_reward": 0.3203125,
2621
+ "rewards/format_reward": 0.953125,
2622
+ "step": 201
2623
+ },
2624
+ {
2625
+ "completion_length": 101.63671875,
2626
+ "epoch": 0.8381742738589212,
2627
+ "grad_norm": 3.34751147226265,
2628
+ "kl": 0.09619140625,
2629
+ "learning_rate": 1.6182572614107884e-07,
2630
+ "loss": 0.0038,
2631
+ "reward": 1.3203125,
2632
+ "reward_std": 0.32434993982315063,
2633
+ "rewards/accuracy_reward": 0.34375,
2634
+ "rewards/format_reward": 0.9765625,
2635
+ "step": 202
2636
+ },
2637
+ {
2638
+ "completion_length": 95.63671875,
2639
+ "epoch": 0.8423236514522822,
2640
+ "grad_norm": 1.9689029980122599,
2641
+ "kl": 0.08056640625,
2642
+ "learning_rate": 1.5767634854771782e-07,
2643
+ "loss": 0.0032,
2644
+ "reward": 1.234375,
2645
+ "reward_std": 0.2784101366996765,
2646
+ "rewards/accuracy_reward": 0.25,
2647
+ "rewards/format_reward": 0.984375,
2648
+ "step": 203
2649
+ },
2650
+ {
2651
+ "completion_length": 98.484375,
2652
+ "epoch": 0.8464730290456431,
2653
+ "grad_norm": 3.570750352423554,
2654
+ "kl": 0.0830078125,
2655
+ "learning_rate": 1.5352697095435686e-07,
2656
+ "loss": 0.0033,
2657
+ "reward": 1.3125,
2658
+ "reward_std": 0.32842758297920227,
2659
+ "rewards/accuracy_reward": 0.328125,
2660
+ "rewards/format_reward": 0.984375,
2661
+ "step": 204
2662
+ },
2663
+ {
2664
+ "completion_length": 93.0390625,
2665
+ "epoch": 0.8506224066390041,
2666
+ "grad_norm": 3.372213441880041,
2667
+ "kl": 0.076171875,
2668
+ "learning_rate": 1.4937759336099584e-07,
2669
+ "loss": 0.0031,
2670
+ "reward": 1.24609375,
2671
+ "reward_std": 0.2814468443393707,
2672
+ "rewards/accuracy_reward": 0.265625,
2673
+ "rewards/format_reward": 0.98046875,
2674
+ "step": 205
2675
+ },
2676
+ {
2677
+ "completion_length": 100.23046875,
2678
+ "epoch": 0.8547717842323651,
2679
+ "grad_norm": 3.861719509898381,
2680
+ "kl": 0.09375,
2681
+ "learning_rate": 1.4522821576763485e-07,
2682
+ "loss": 0.0038,
2683
+ "reward": 1.26953125,
2684
+ "reward_std": 0.31658661365509033,
2685
+ "rewards/accuracy_reward": 0.3125,
2686
+ "rewards/format_reward": 0.95703125,
2687
+ "step": 206
2688
+ },
2689
+ {
2690
+ "completion_length": 89.0625,
2691
+ "epoch": 0.8589211618257261,
2692
+ "grad_norm": 6.172287251013444,
2693
+ "kl": 0.087890625,
2694
+ "learning_rate": 1.4107883817427386e-07,
2695
+ "loss": 0.0035,
2696
+ "reward": 1.3046875,
2697
+ "reward_std": 0.25658145546913147,
2698
+ "rewards/accuracy_reward": 0.31640625,
2699
+ "rewards/format_reward": 0.98828125,
2700
+ "step": 207
2701
+ },
2702
+ {
2703
+ "completion_length": 98.75390625,
2704
+ "epoch": 0.8630705394190872,
2705
+ "grad_norm": 12.466091184278106,
2706
+ "kl": 0.09521484375,
2707
+ "learning_rate": 1.3692946058091287e-07,
2708
+ "loss": 0.0038,
2709
+ "reward": 1.1796875,
2710
+ "reward_std": 0.28974291682243347,
2711
+ "rewards/accuracy_reward": 0.21484375,
2712
+ "rewards/format_reward": 0.96484375,
2713
+ "step": 208
2714
+ },
2715
+ {
2716
+ "completion_length": 85.42578125,
2717
+ "epoch": 0.8672199170124482,
2718
+ "grad_norm": 3.393938200300927,
2719
+ "kl": 0.09033203125,
2720
+ "learning_rate": 1.3278008298755186e-07,
2721
+ "loss": 0.0036,
2722
+ "reward": 1.41015625,
2723
+ "reward_std": 0.26117590069770813,
2724
+ "rewards/accuracy_reward": 0.4296875,
2725
+ "rewards/format_reward": 0.98046875,
2726
+ "step": 209
2727
+ },
2728
+ {
2729
+ "completion_length": 106.23046875,
2730
+ "epoch": 0.8713692946058091,
2731
+ "grad_norm": 6.618744333693797,
2732
+ "kl": 0.0732421875,
2733
+ "learning_rate": 1.2863070539419084e-07,
2734
+ "loss": 0.0029,
2735
+ "reward": 1.27734375,
2736
+ "reward_std": 0.3217734694480896,
2737
+ "rewards/accuracy_reward": 0.29296875,
2738
+ "rewards/format_reward": 0.984375,
2739
+ "step": 210
2740
+ },
2741
+ {
2742
+ "completion_length": 94.83984375,
2743
+ "epoch": 0.8755186721991701,
2744
+ "grad_norm": 3.712536977931616,
2745
+ "kl": 0.0908203125,
2746
+ "learning_rate": 1.2448132780082988e-07,
2747
+ "loss": 0.0036,
2748
+ "reward": 1.34375,
2749
+ "reward_std": 0.30023884773254395,
2750
+ "rewards/accuracy_reward": 0.36328125,
2751
+ "rewards/format_reward": 0.98046875,
2752
+ "step": 211
2753
+ },
2754
+ {
2755
+ "completion_length": 101.30078125,
2756
+ "epoch": 0.8796680497925311,
2757
+ "grad_norm": 3.481823321693955,
2758
+ "kl": 0.0869140625,
2759
+ "learning_rate": 1.203319502074689e-07,
2760
+ "loss": 0.0035,
2761
+ "reward": 1.26953125,
2762
+ "reward_std": 0.32253044843673706,
2763
+ "rewards/accuracy_reward": 0.30078125,
2764
+ "rewards/format_reward": 0.96875,
2765
+ "step": 212
2766
+ },
2767
+ {
2768
+ "completion_length": 95.96484375,
2769
+ "epoch": 0.8838174273858921,
2770
+ "grad_norm": 2.4104826815675646,
2771
+ "kl": 0.0703125,
2772
+ "learning_rate": 1.1618257261410788e-07,
2773
+ "loss": 0.0028,
2774
+ "reward": 1.1796875,
2775
+ "reward_std": 0.251188188791275,
2776
+ "rewards/accuracy_reward": 0.203125,
2777
+ "rewards/format_reward": 0.9765625,
2778
+ "step": 213
2779
+ },
2780
+ {
2781
+ "completion_length": 98.62109375,
2782
+ "epoch": 0.8879668049792531,
2783
+ "grad_norm": 2.2792919284740303,
2784
+ "kl": 0.07568359375,
2785
+ "learning_rate": 1.1203319502074688e-07,
2786
+ "loss": 0.003,
2787
+ "reward": 1.3203125,
2788
+ "reward_std": 0.31220242381095886,
2789
+ "rewards/accuracy_reward": 0.3359375,
2790
+ "rewards/format_reward": 0.984375,
2791
+ "step": 214
2792
+ },
2793
+ {
2794
+ "completion_length": 100.05078125,
2795
+ "epoch": 0.8921161825726142,
2796
+ "grad_norm": 4.276254804277667,
2797
+ "kl": 0.08349609375,
2798
+ "learning_rate": 1.0788381742738589e-07,
2799
+ "loss": 0.0033,
2800
+ "reward": 1.23828125,
2801
+ "reward_std": 0.2676299810409546,
2802
+ "rewards/accuracy_reward": 0.265625,
2803
+ "rewards/format_reward": 0.97265625,
2804
+ "step": 215
2805
+ },
2806
+ {
2807
+ "completion_length": 93.05078125,
2808
+ "epoch": 0.8962655601659751,
2809
+ "grad_norm": 3.5229171032652435,
2810
+ "kl": 0.0986328125,
2811
+ "learning_rate": 1.037344398340249e-07,
2812
+ "loss": 0.004,
2813
+ "reward": 1.25,
2814
+ "reward_std": 0.31738150119781494,
2815
+ "rewards/accuracy_reward": 0.2734375,
2816
+ "rewards/format_reward": 0.9765625,
2817
+ "step": 216
2818
+ },
2819
+ {
2820
+ "completion_length": 94.16015625,
2821
+ "epoch": 0.9004149377593361,
2822
+ "grad_norm": 11.757057583856977,
2823
+ "kl": 0.078125,
2824
+ "learning_rate": 9.958506224066389e-08,
2825
+ "loss": 0.0031,
2826
+ "reward": 1.21875,
2827
+ "reward_std": 0.24235805869102478,
2828
+ "rewards/accuracy_reward": 0.23046875,
2829
+ "rewards/format_reward": 0.98828125,
2830
+ "step": 217
2831
+ },
2832
+ {
2833
+ "completion_length": 85.44140625,
2834
+ "epoch": 0.9045643153526971,
2835
+ "grad_norm": 1.9091471037010437,
2836
+ "kl": 0.103515625,
2837
+ "learning_rate": 9.54356846473029e-08,
2838
+ "loss": 0.0041,
2839
+ "reward": 1.1953125,
2840
+ "reward_std": 0.2225247025489807,
2841
+ "rewards/accuracy_reward": 0.2109375,
2842
+ "rewards/format_reward": 0.984375,
2843
+ "step": 218
2844
+ },
2845
+ {
2846
+ "completion_length": 96.31640625,
2847
+ "epoch": 0.9087136929460581,
2848
+ "grad_norm": 3.0098424472404544,
2849
+ "kl": 0.07568359375,
2850
+ "learning_rate": 9.128630705394189e-08,
2851
+ "loss": 0.003,
2852
+ "reward": 1.31640625,
2853
+ "reward_std": 0.3151411712169647,
2854
+ "rewards/accuracy_reward": 0.3359375,
2855
+ "rewards/format_reward": 0.98046875,
2856
+ "step": 219
2857
+ },
2858
+ {
2859
+ "completion_length": 102.65234375,
2860
+ "epoch": 0.9128630705394191,
2861
+ "grad_norm": 4.643564268046483,
2862
+ "kl": 0.0888671875,
2863
+ "learning_rate": 8.71369294605809e-08,
2864
+ "loss": 0.0036,
2865
+ "reward": 1.15625,
2866
+ "reward_std": 0.2785586714744568,
2867
+ "rewards/accuracy_reward": 0.19921875,
2868
+ "rewards/format_reward": 0.95703125,
2869
+ "step": 220
2870
+ },
2871
+ {
2872
+ "completion_length": 93.80859375,
2873
+ "epoch": 0.91701244813278,
2874
+ "grad_norm": 4.410133029194588,
2875
+ "kl": 0.06982421875,
2876
+ "learning_rate": 8.298755186721991e-08,
2877
+ "loss": 0.0028,
2878
+ "reward": 1.24609375,
2879
+ "reward_std": 0.20357662439346313,
2880
+ "rewards/accuracy_reward": 0.24609375,
2881
+ "rewards/format_reward": 1.0,
2882
+ "step": 221
2883
+ },
2884
+ {
2885
+ "completion_length": 101.15234375,
2886
+ "epoch": 0.921161825726141,
2887
+ "grad_norm": 2.904709180452436,
2888
+ "kl": 0.08154296875,
2889
+ "learning_rate": 7.883817427385891e-08,
2890
+ "loss": 0.0033,
2891
+ "reward": 1.19140625,
2892
+ "reward_std": 0.2115919589996338,
2893
+ "rewards/accuracy_reward": 0.21484375,
2894
+ "rewards/format_reward": 0.9765625,
2895
+ "step": 222
2896
+ },
2897
+ {
2898
+ "completion_length": 96.94140625,
2899
+ "epoch": 0.9253112033195021,
2900
+ "grad_norm": 4.354536159655136,
2901
+ "kl": 0.0751953125,
2902
+ "learning_rate": 7.468879668049792e-08,
2903
+ "loss": 0.003,
2904
+ "reward": 1.24609375,
2905
+ "reward_std": 0.21827393770217896,
2906
+ "rewards/accuracy_reward": 0.26953125,
2907
+ "rewards/format_reward": 0.9765625,
2908
+ "step": 223
2909
+ },
2910
+ {
2911
+ "completion_length": 93.47265625,
2912
+ "epoch": 0.9294605809128631,
2913
+ "grad_norm": 6.600006221648485,
2914
+ "kl": 0.12451171875,
2915
+ "learning_rate": 7.053941908713693e-08,
2916
+ "loss": 0.005,
2917
+ "reward": 1.15625,
2918
+ "reward_std": 0.2866210341453552,
2919
+ "rewards/accuracy_reward": 0.2109375,
2920
+ "rewards/format_reward": 0.9453125,
2921
+ "step": 224
2922
+ },
2923
+ {
2924
+ "completion_length": 101.734375,
2925
+ "epoch": 0.9336099585062241,
2926
+ "grad_norm": 2.59933094148854,
2927
+ "kl": 0.0810546875,
2928
+ "learning_rate": 6.639004149377593e-08,
2929
+ "loss": 0.0032,
2930
+ "reward": 1.31640625,
2931
+ "reward_std": 0.34125426411628723,
2932
+ "rewards/accuracy_reward": 0.33984375,
2933
+ "rewards/format_reward": 0.9765625,
2934
+ "step": 225
2935
+ },
2936
+ {
2937
+ "completion_length": 91.54296875,
2938
+ "epoch": 0.9377593360995851,
2939
+ "grad_norm": 2.8944936970951853,
2940
+ "kl": 0.0947265625,
2941
+ "learning_rate": 6.224066390041494e-08,
2942
+ "loss": 0.0038,
2943
+ "reward": 1.28515625,
2944
+ "reward_std": 0.2791742980480194,
2945
+ "rewards/accuracy_reward": 0.3046875,
2946
+ "rewards/format_reward": 0.98046875,
2947
+ "step": 226
2948
+ },
2949
+ {
2950
+ "completion_length": 103.78125,
2951
+ "epoch": 0.941908713692946,
2952
+ "grad_norm": 4.590255163351441,
2953
+ "kl": 0.0830078125,
2954
+ "learning_rate": 5.809128630705394e-08,
2955
+ "loss": 0.0033,
2956
+ "reward": 1.25390625,
2957
+ "reward_std": 0.3090318739414215,
2958
+ "rewards/accuracy_reward": 0.29296875,
2959
+ "rewards/format_reward": 0.9609375,
2960
+ "step": 227
2961
+ },
2962
+ {
2963
+ "completion_length": 94.26953125,
2964
+ "epoch": 0.946058091286307,
2965
+ "grad_norm": 2.1761507216115255,
2966
+ "kl": 0.09423828125,
2967
+ "learning_rate": 5.3941908713692946e-08,
2968
+ "loss": 0.0038,
2969
+ "reward": 1.2421875,
2970
+ "reward_std": 0.23839645087718964,
2971
+ "rewards/accuracy_reward": 0.28515625,
2972
+ "rewards/format_reward": 0.95703125,
2973
+ "step": 228
2974
+ },
2975
+ {
2976
+ "completion_length": 97.3984375,
2977
+ "epoch": 0.950207468879668,
2978
+ "grad_norm": 4.778688881591497,
2979
+ "kl": 0.09375,
2980
+ "learning_rate": 4.979253112033194e-08,
2981
+ "loss": 0.0037,
2982
+ "reward": 1.2421875,
2983
+ "reward_std": 0.24435341358184814,
2984
+ "rewards/accuracy_reward": 0.265625,
2985
+ "rewards/format_reward": 0.9765625,
2986
+ "step": 229
2987
+ },
2988
+ {
2989
+ "completion_length": 103.171875,
2990
+ "epoch": 0.9543568464730291,
2991
+ "grad_norm": 2.9856087811245935,
2992
+ "kl": 0.08935546875,
2993
+ "learning_rate": 4.5643153526970947e-08,
2994
+ "loss": 0.0036,
2995
+ "reward": 1.34765625,
2996
+ "reward_std": 0.31364643573760986,
2997
+ "rewards/accuracy_reward": 0.37890625,
2998
+ "rewards/format_reward": 0.96875,
2999
+ "step": 230
3000
+ },
3001
+ {
3002
+ "completion_length": 96.609375,
3003
+ "epoch": 0.9585062240663901,
3004
+ "grad_norm": 4.58965397807011,
3005
+ "kl": 0.076171875,
3006
+ "learning_rate": 4.149377593360996e-08,
3007
+ "loss": 0.0031,
3008
+ "reward": 1.2265625,
3009
+ "reward_std": 0.2816419303417206,
3010
+ "rewards/accuracy_reward": 0.24609375,
3011
+ "rewards/format_reward": 0.98046875,
3012
+ "step": 231
3013
+ },
3014
+ {
3015
+ "completion_length": 106.4140625,
3016
+ "epoch": 0.9626556016597511,
3017
+ "grad_norm": 4.259706500288727,
3018
+ "kl": 0.083984375,
3019
+ "learning_rate": 3.734439834024896e-08,
3020
+ "loss": 0.0034,
3021
+ "reward": 1.19921875,
3022
+ "reward_std": 0.2757681608200073,
3023
+ "rewards/accuracy_reward": 0.24609375,
3024
+ "rewards/format_reward": 0.953125,
3025
+ "step": 232
3026
+ },
3027
+ {
3028
+ "completion_length": 101.8203125,
3029
+ "epoch": 0.966804979253112,
3030
+ "grad_norm": 4.0534911383906085,
3031
+ "kl": 0.078125,
3032
+ "learning_rate": 3.3195020746887964e-08,
3033
+ "loss": 0.0031,
3034
+ "reward": 1.26953125,
3035
+ "reward_std": 0.2769816219806671,
3036
+ "rewards/accuracy_reward": 0.3125,
3037
+ "rewards/format_reward": 0.95703125,
3038
+ "step": 233
3039
+ },
3040
+ {
3041
+ "completion_length": 102.25,
3042
+ "epoch": 0.970954356846473,
3043
+ "grad_norm": 4.9799320704360825,
3044
+ "kl": 0.08837890625,
3045
+ "learning_rate": 2.904564315352697e-08,
3046
+ "loss": 0.0035,
3047
+ "reward": 1.29296875,
3048
+ "reward_std": 0.3803676962852478,
3049
+ "rewards/accuracy_reward": 0.33984375,
3050
+ "rewards/format_reward": 0.953125,
3051
+ "step": 234
3052
+ },
3053
+ {
3054
+ "completion_length": 84.4921875,
3055
+ "epoch": 0.975103734439834,
3056
+ "grad_norm": 7.36284248917279,
3057
+ "kl": 0.11181640625,
3058
+ "learning_rate": 2.489626556016597e-08,
3059
+ "loss": 0.0045,
3060
+ "reward": 1.23828125,
3061
+ "reward_std": 0.26031655073165894,
3062
+ "rewards/accuracy_reward": 0.26171875,
3063
+ "rewards/format_reward": 0.9765625,
3064
+ "step": 235
3065
+ },
3066
+ {
3067
+ "completion_length": 101.4765625,
3068
+ "epoch": 0.979253112033195,
3069
+ "grad_norm": 4.233011578281721,
3070
+ "kl": 0.080078125,
3071
+ "learning_rate": 2.074688796680498e-08,
3072
+ "loss": 0.0032,
3073
+ "reward": 1.3203125,
3074
+ "reward_std": 0.3218572735786438,
3075
+ "rewards/accuracy_reward": 0.33984375,
3076
+ "rewards/format_reward": 0.98046875,
3077
+ "step": 236
3078
+ },
3079
+ {
3080
+ "completion_length": 94.22265625,
3081
+ "epoch": 0.983402489626556,
3082
+ "grad_norm": 2.619642461579283,
3083
+ "kl": 0.08837890625,
3084
+ "learning_rate": 1.6597510373443982e-08,
3085
+ "loss": 0.0035,
3086
+ "reward": 1.2890625,
3087
+ "reward_std": 0.32815423607826233,
3088
+ "rewards/accuracy_reward": 0.3203125,
3089
+ "rewards/format_reward": 0.96875,
3090
+ "step": 237
3091
+ },
3092
+ {
3093
+ "completion_length": 97.37890625,
3094
+ "epoch": 0.9875518672199171,
3095
+ "grad_norm": 3.912385420123859,
3096
+ "kl": 0.095703125,
3097
+ "learning_rate": 1.2448132780082986e-08,
3098
+ "loss": 0.0038,
3099
+ "reward": 1.2109375,
3100
+ "reward_std": 0.2913069427013397,
3101
+ "rewards/accuracy_reward": 0.2578125,
3102
+ "rewards/format_reward": 0.953125,
3103
+ "step": 238
3104
+ },
3105
+ {
3106
+ "completion_length": 106.0234375,
3107
+ "epoch": 0.991701244813278,
3108
+ "grad_norm": 3.1256612206439294,
3109
+ "kl": 0.08935546875,
3110
+ "learning_rate": 8.298755186721991e-09,
3111
+ "loss": 0.0036,
3112
+ "reward": 1.2421875,
3113
+ "reward_std": 0.2937677502632141,
3114
+ "rewards/accuracy_reward": 0.2734375,
3115
+ "rewards/format_reward": 0.96875,
3116
+ "step": 239
3117
+ },
3118
+ {
3119
+ "completion_length": 98.15625,
3120
+ "epoch": 0.995850622406639,
3121
+ "grad_norm": 3.5682820113500076,
3122
+ "kl": 0.08740234375,
3123
+ "learning_rate": 4.1493775933609955e-09,
3124
+ "loss": 0.0035,
3125
+ "reward": 1.29296875,
3126
+ "reward_std": 0.3183509409427643,
3127
+ "rewards/accuracy_reward": 0.3359375,
3128
+ "rewards/format_reward": 0.95703125,
3129
+ "step": 240
3130
+ },
3131
+ {
3132
+ "completion_length": 77.55555725097656,
3133
+ "epoch": 1.0,
3134
+ "grad_norm": 4.43221819261977,
3135
+ "kl": 0.12255859375,
3136
+ "learning_rate": 0.0,
3137
+ "loss": 0.004,
3138
+ "reward": 1.3333333730697632,
3139
+ "reward_std": 0.41147559881210327,
3140
+ "rewards/accuracy_reward": 0.3333333432674408,
3141
+ "rewards/format_reward": 1.0,
3142
+ "step": 241
3143
+ }
3144
+ ],
3145
+ "logging_steps": 1.0,
3146
+ "max_steps": 241,
3147
+ "num_input_tokens_seen": 0,
3148
+ "num_train_epochs": 1,
3149
+ "save_steps": 500,
3150
+ "stateful_callbacks": {
3151
+ "TrainerControl": {
3152
+ "args": {
3153
+ "should_epoch_stop": false,
3154
+ "should_evaluate": false,
3155
+ "should_log": false,
3156
+ "should_save": true,
3157
+ "should_training_stop": true
3158
+ },
3159
+ "attributes": {}
3160
+ }
3161
+ },
3162
+ "total_flos": 0.0,
3163
+ "train_batch_size": 1,
3164
+ "trial_name": null,
3165
+ "trial_params": null
3166
+ }
checkpoint-241/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29a51e69401bcc89579d8aeb02b6332a569eb27494642cc4cb4990bb76aa7073
3
+ size 7672
checkpoint-241/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-241/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2-VL-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 18944,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_vl",
17
+ "num_attention_heads": 28,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 4,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.49.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "in_chans": 3,
40
+ "model_type": "qwen2_vl",
41
+ "spatial_patch_size": 14,
42
+ "torch_dtype": "float32"
43
+ },
44
+ "vision_end_token_id": 151653,
45
+ "vision_start_token_id": 151652,
46
+ "vision_token_id": 151654,
47
+ "vocab_size": 152064
48
+ }
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "temperature": 0.01,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.49.0.dev0",
14
+ "use_cache": false
15
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff