doberst commited on
Commit
f3b4c4c
1 Parent(s): d2bcbed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -1,15 +1,16 @@
1
  ---
2
  license: apache-2.0
3
  inference: false
 
4
  ---
5
 
6
- # bling-tiny-llama-ov
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
- **bling-tiny-llama-ov** is an OpenVino int4 quantized version of BLING Tiny-Llama 1B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
11
 
12
- [**bling-tiny-llama**](https://huggingface.co/llmware/bling-tiny-llama-v0) is a fact-based question-answering model, optimized for complex business documents.
13
 
14
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
15
 
@@ -21,11 +22,11 @@ Looking for AI PC solutions and demos, contact us at [llmware](https://www.llmwa
21
  - **Developed by:** llmware
22
  - **Model type:** tinyllama
23
  - **Parameters:** 1.1 billion
24
- - **Model Parent:** llmware/bling-tiny-llama-v0
25
  - **Language(s) (NLP):** English
26
  - **License:** Apache 2.0
27
- - **Uses:** Fact-based question-answering
28
- - **RAG Benchmark Accuracy Score:** 86.5
29
  - **Quantization:** int4
30
 
31
 
 
1
  ---
2
  license: apache-2.0
3
  inference: false
4
+ tags: [green, p1, llmware-fx,ov]
5
  ---
6
 
7
+ # slim-sentiment-ov
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ **slim-sentiment-ov** is an OpenVino int4 quantized version of slim sentiment 1B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
+ [**slim-sentiment**](https://huggingface.co/llmware/slim-sentiment) is a function-calling specialized model finetuned to evaluate sentiment and return a python dictionary with a sentiment key and the classification value, e.g., "positive", "negative", or "neutral".
14
 
15
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
 
 
22
  - **Developed by:** llmware
23
  - **Model type:** tinyllama
24
  - **Parameters:** 1.1 billion
25
+ - **Model Parent:** llmware/slim-sentiment
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
+ - **Uses:** Sentiment classification
29
+ - **RAG Benchmark Accuracy Score:** NA
30
  - **Quantization:** int4
31
 
32