Update README.md
Browse files
README.md
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
inference: false
|
4 |
-
tags: [green, llmware-rag, p1, ov]
|
5 |
---
|
6 |
|
7 |
-
# bling-
|
8 |
|
9 |
-
**bling-
|
10 |
|
11 |
-
This model is one of the smallest
|
12 |
|
13 |
### Model Description
|
14 |
|
15 |
- **Developed by:** llmware
|
16 |
-
- **Model type:**
|
17 |
-
- **Parameters:** 1.
|
18 |
- **Quantization:** int4
|
19 |
-
- **Model Parent:** [llmware/bling-
|
20 |
- **Language(s) (NLP):** English
|
21 |
- **License:** Apache 2.0
|
22 |
- **Uses:** Fact-based question-answering, RAG
|
23 |
-
- **RAG Benchmark Accuracy Score:**
|
24 |
|
25 |
|
26 |
## Model Card Contact
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
inference: false
|
4 |
+
tags: [green, llmware-rag, p1, ov,emerald]
|
5 |
---
|
6 |
|
7 |
+
# bling-qwen-1.5b-ov
|
8 |
|
9 |
+
**bling-qwen-1.5b-ov** is a very small, very fast fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
|
10 |
|
11 |
+
This model is one of the smallest in the series, yet offers relatively high accuracy and quality.
|
12 |
|
13 |
### Model Description
|
14 |
|
15 |
- **Developed by:** llmware
|
16 |
+
- **Model type:** qwen2
|
17 |
+
- **Parameters:** 1.5 billion
|
18 |
- **Quantization:** int4
|
19 |
+
- **Model Parent:** [llmware/bling-qwen-1.5b](https://www.huggingface.co/llmware/bling-qwen-1.5b)
|
20 |
- **Language(s) (NLP):** English
|
21 |
- **License:** Apache 2.0
|
22 |
- **Uses:** Fact-based question-answering, RAG
|
23 |
+
- **RAG Benchmark Accuracy Score:** 93.5
|
24 |
|
25 |
|
26 |
## Model Card Contact
|