doberst commited on
Commit
c56d163
1 Parent(s): 06626da

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -1,26 +1,26 @@
1
  ---
2
  license: apache-2.0
3
  inference: false
4
- tags: [green, llmware-rag, p1, ov]
5
  ---
6
 
7
- # bling-tiny-llama-ov
8
 
9
- **bling-tiny-llama-ov** is a very small, very fast fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
10
 
11
- This model is one of the smallest and fastest in the series. For higher accuracy, look at larger models in the BLING/DRAGON series.
12
 
13
  ### Model Description
14
 
15
  - **Developed by:** llmware
16
- - **Model type:** tinyllama
17
- - **Parameters:** 1.1 billion
18
  - **Quantization:** int4
19
- - **Model Parent:** [llmware/bling-tiny-llama-v0](https://www.huggingface.co/llmware/bling-tiny-llama-v0)
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
  - **Uses:** Fact-based question-answering, RAG
23
- - **RAG Benchmark Accuracy Score:** 86.5
24
 
25
 
26
  ## Model Card Contact
 
1
  ---
2
  license: apache-2.0
3
  inference: false
4
+ tags: [green, llmware-rag, p1, ov,emerald]
5
  ---
6
 
7
+ # bling-qwen-1.5b-ov
8
 
9
+ **bling-qwen-1.5b-ov** is a very small, very fast fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
10
 
11
+ This model is one of the smallest in the series, yet offers relatively high accuracy and quality.
12
 
13
  ### Model Description
14
 
15
  - **Developed by:** llmware
16
+ - **Model type:** qwen2
17
+ - **Parameters:** 1.5 billion
18
  - **Quantization:** int4
19
+ - **Model Parent:** [llmware/bling-qwen-1.5b](https://www.huggingface.co/llmware/bling-qwen-1.5b)
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
  - **Uses:** Fact-based question-answering, RAG
23
+ - **RAG Benchmark Accuracy Score:** 93.5
24
 
25
 
26
  ## Model Card Contact