doberst commited on
Commit
8e8df03
1 Parent(s): fc50d4a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -34
README.md CHANGED
@@ -7,7 +7,7 @@ inference: false
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
- bling-phi-3 is part of the BLING ("Best Little Instruct No-GPU") model series, RAG-instruct trained on top of a Microsoft Phi-3 base model.
11
 
12
 
13
  ### Benchmark Tests
@@ -15,10 +15,10 @@ bling-phi-3 is part of the BLING ("Best Little Instruct No-GPU") model series, R
15
  Evaluated against the benchmark test: [RAG-Instruct-Benchmark-Tester](https://www.huggingface.co/datasets/llmware/rag_instruct_benchmark_tester)
16
  1 Test Run (temperature=0.0, sample=False) with 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations.
17
 
18
- --**Accuracy Score**: **99.5** correct out of 100
19
- --Not Found Classification: 95.0%
20
- --Boolean: 97.5%
21
- --Math/Logic: 80.0%
22
  --Complex Questions (1-5): 4 (Above Average - multiple-choice, causal)
23
  --Summarization Quality (1-5): 4 (Above Average)
24
  --Hallucinations: No hallucinations observed in test runs.
@@ -27,9 +27,6 @@ For test run results (and good indicator of target use cases), please see the fi
27
 
28
  Note: compare results with [bling-phi-2](https://www.huggingface.co/llmware/bling-phi-2-v0), and [dragon-mistral-7b](https://www.huggingface.co/llmware/dragon-mistral-7b-v0).
29
 
30
- Note: see also the quantized gguf version of the model- [bling-phi-3-gguf](https://www.huggingface.co/llmware/bling-phi-3-gguf).
31
-
32
- Note: the Pytorch version answered 1 question with "Not Found" while the quantized version answered it correctly, hence the small difference in scores.
33
 
34
  ### Model Description
35
 
@@ -39,7 +36,7 @@ Note: the Pytorch version answered 1 question with "Not Found" while the quantiz
39
  - **Model type:** bling
40
  - **Language(s) (NLP):** English
41
  - **License:** Apache 2.0
42
- - **Finetuned from model:** Microsoft Phi-3
43
 
44
  ## Uses
45
 
@@ -75,8 +72,8 @@ Any model can provide inaccurate or incomplete information, and should be used i
75
  The fastest way to get started with BLING is through direct import in transformers:
76
 
77
  from transformers import AutoTokenizer, AutoModelForCausalLM
78
- tokenizer = AutoTokenizer.from_pretrained("llmware/bling-phi-3", trust_remote_code=True)
79
- model = AutoModelForCausalLM.from_pretrained("llmware/bling-phi-3", trust_remote_code=True)
80
 
81
  Please refer to the generation_test .py files in the Files repository, which includes 200 samples and script to test the model. The **generation_test_llmware_script.py** includes built-in llmware capabilities for fact-checking, as well as easy integration with document parsing and actual retrieval to swap out the test set for RAG workflow consisting of business documents.
82
 
@@ -97,29 +94,6 @@ To get the best results, package "my_prompt" as follows:
97
  my_prompt = {{text_passage}} + "\n" + {{question/instruction}}
98
 
99
 
100
- If you are using a HuggingFace generation script:
101
-
102
- # prepare prompt packaging used in fine-tuning process
103
- new_prompt = "<human>: " + entries["context"] + "\n" + entries["query"] + "\n" + "<bot>:"
104
-
105
- inputs = tokenizer(new_prompt, return_tensors="pt")
106
- start_of_output = len(inputs.input_ids[0])
107
-
108
- # temperature: set at 0.0 with do_sample=False for consistency of output
109
- # max_new_tokens: set at 100 - may prematurely stop a few of the summaries
110
-
111
- outputs = model.generate(
112
- inputs.input_ids.to(device),
113
- eos_token_id=tokenizer.eos_token_id,
114
- pad_token_id=tokenizer.eos_token_id,
115
- do_sample=False,
116
- temperature=0.0,
117
- max_new_tokens=100,
118
- )
119
-
120
- output_only = tokenizer.decode(outputs[0][start_of_output:],skip_special_tokens=True)
121
-
122
-
123
  ## Model Card Contact
124
 
125
  Darren Oberst & llmware team
 
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
+ bling-phi-3 is part of the BLING ("Best Little Instruct No-GPU") model series, RAG-instruct trained on top of a Microsoft Phi-3.5 base model.
11
 
12
 
13
  ### Benchmark Tests
 
15
  Evaluated against the benchmark test: [RAG-Instruct-Benchmark-Tester](https://www.huggingface.co/datasets/llmware/rag_instruct_benchmark_tester)
16
  1 Test Run (temperature=0.0, sample=False) with 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations.
17
 
18
+ --**Accuracy Score**: **100** correct out of 100
19
+ --Not Found Classification: 85.0%
20
+ --Boolean: 95.0%
21
+ --Math/Logic: 90.0%
22
  --Complex Questions (1-5): 4 (Above Average - multiple-choice, causal)
23
  --Summarization Quality (1-5): 4 (Above Average)
24
  --Hallucinations: No hallucinations observed in test runs.
 
27
 
28
  Note: compare results with [bling-phi-2](https://www.huggingface.co/llmware/bling-phi-2-v0), and [dragon-mistral-7b](https://www.huggingface.co/llmware/dragon-mistral-7b-v0).
29
 
 
 
 
30
 
31
  ### Model Description
32
 
 
36
  - **Model type:** bling
37
  - **Language(s) (NLP):** English
38
  - **License:** Apache 2.0
39
+ - **Finetuned from model:** Microsoft Phi-3.5
40
 
41
  ## Uses
42
 
 
72
  The fastest way to get started with BLING is through direct import in transformers:
73
 
74
  from transformers import AutoTokenizer, AutoModelForCausalLM
75
+ tokenizer = AutoTokenizer.from_pretrained("llmware/bling-phi-3.5-gguf", trust_remote_code=True)
76
+ model = AutoModelForCausalLM.from_pretrained("llmware/bling-phi-3.5-gguf", trust_remote_code=True)
77
 
78
  Please refer to the generation_test .py files in the Files repository, which includes 200 samples and script to test the model. The **generation_test_llmware_script.py** includes built-in llmware capabilities for fact-checking, as well as easy integration with document parsing and actual retrieval to swap out the test set for RAG workflow consisting of business documents.
79
 
 
94
  my_prompt = {{text_passage}} + "\n" + {{question/instruction}}
95
 
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  ## Model Card Contact
98
 
99
  Darren Oberst & llmware team