doberst commited on
Commit
41072d8
1 Parent(s): 320f107

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -23,7 +23,7 @@ Average of 2 Test Runs with 1 point for correct answer, 0.5 point for partial co
23
  --Boolean: 85.0%
24
  --Math/Logic: 82.5%
25
  --Complex Questions (1-5): 3 (Above Average - multiple-choice, causal)
26
- --Summarization Quality (1-5): 3 (Coherent, extractive)
27
  --Hallucinations: No hallucinations observed in test runs.
28
 
29
  For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo).
@@ -35,7 +35,7 @@ For test run results (and good indicator of target use cases), please see the fi
35
  - **Developed by:** llmware
36
  - **Model type:** Phi-2B
37
  - **Language(s) (NLP):** English
38
- - **License:** Microsoft Research License
39
  - **Finetuned from model:** Microsoft Phi-2B-Base
40
 
41
  ## Uses
@@ -69,7 +69,7 @@ Any model can provide inaccurate or incomplete information, and should be used i
69
 
70
  ## How to Get Started with the Model
71
 
72
- The fastest way to get started with dRAGon is through direct import in transformers:
73
 
74
  from transformers import AutoTokenizer, AutoModelForCausalLM
75
  tokenizer = AutoTokenizer.from_pretrained("bling-phi-2-v0", trust_remote_code=True)
 
23
  --Boolean: 85.0%
24
  --Math/Logic: 82.5%
25
  --Complex Questions (1-5): 3 (Above Average - multiple-choice, causal)
26
+ --Summarization Quality (1-5): 3 (Above Average)
27
  --Hallucinations: No hallucinations observed in test runs.
28
 
29
  For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo).
 
35
  - **Developed by:** llmware
36
  - **Model type:** Phi-2B
37
  - **Language(s) (NLP):** English
38
+ - **License:** [Microsoft Research License](https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE)
39
  - **Finetuned from model:** Microsoft Phi-2B-Base
40
 
41
  ## Uses
 
69
 
70
  ## How to Get Started with the Model
71
 
72
+ The fastest way to get started with BLING is through direct import in transformers:
73
 
74
  from transformers import AutoTokenizer, AutoModelForCausalLM
75
  tokenizer = AutoTokenizer.from_pretrained("bling-phi-2-v0", trust_remote_code=True)