Added control vectors parameter and wrapper
Browse files- .gitignore +1 -0
- exl2_wrapper.py +85 -0
- test_inference.py +5 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
exl2_wrapper.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import torch
|
3 |
+
from gguf.gguf_reader import GGUFReader
|
4 |
+
|
5 |
+
class ExLlamaV2ModuleWrapper:
|
6 |
+
@classmethod
|
7 |
+
def wrap(cls, model, vector_configs):
|
8 |
+
vectors = {}
|
9 |
+
for file in glob.glob(str(model.config.model_dir) + '-vectors/*.gguf'):
|
10 |
+
base = file.rsplit('-', 1)[-1].replace('.gguf', '')
|
11 |
+
vector, direction = base.split('__')
|
12 |
+
print(f"Loaded control vector: {vector}, Direction: {direction}")
|
13 |
+
reader = GGUFReader(file)
|
14 |
+
|
15 |
+
if reader.tensors[0].n_elements != model.config.hidden_size:
|
16 |
+
print(' ## Control vector n_elements ({reader.tensors[0].n_elements}) != model.config.hidden_size ({model.config.hidden_size})')
|
17 |
+
sys.exit()
|
18 |
+
layers = torch.zeros((model.config.num_hidden_layers, model.config.hidden_size), dtype=torch.float32)
|
19 |
+
for tensor in reader.tensors:
|
20 |
+
idx = int(tensor.name.split('.')[-1])
|
21 |
+
layers[idx] = torch.from_numpy(tensor.data.copy())
|
22 |
+
vectors.setdefault(vector, {})[direction] = layers
|
23 |
+
|
24 |
+
vector_configs = vector_configs.split(',')
|
25 |
+
control_vector = torch.zeros((model.config.num_hidden_layers, model.config.hidden_size), dtype=torch.float32)
|
26 |
+
for vector_config in vector_configs:
|
27 |
+
(vector, direction, weight) = vector_config.split(':')
|
28 |
+
vector_dirs = None
|
29 |
+
for k, v in vectors.items():
|
30 |
+
if vector in k:
|
31 |
+
vector = k
|
32 |
+
vector_dirs = v
|
33 |
+
break
|
34 |
+
if vector_dirs is None:
|
35 |
+
print(' !! Error: No vector for "%s" (%s)' % (vector, vector_config))
|
36 |
+
continue
|
37 |
+
|
38 |
+
debias_layers = vector_dirs.get('debias', None)
|
39 |
+
if debias_layers is None:
|
40 |
+
print(' !! Error: No debias for "%s" (%s)' % (vector, vector_config))
|
41 |
+
continue
|
42 |
+
|
43 |
+
direction_layers = vector_dirs.get(direction, None)
|
44 |
+
if direction_layers is None:
|
45 |
+
print(' !! Error: No "%s" for "%s" (%s)' % (direction, vector, vector_config))
|
46 |
+
continue
|
47 |
+
|
48 |
+
try:
|
49 |
+
weight = float(weight)
|
50 |
+
except Exception as e:
|
51 |
+
print(' !! Non float weight %s (%s)' % (weight, vector_config))
|
52 |
+
weight = 1.0
|
53 |
+
|
54 |
+
print(' -- Applying %s debias and %s * %s' % (vector, direction, weight))
|
55 |
+
control_vector += debias_layers
|
56 |
+
control_vector += direction_layers * weight
|
57 |
+
|
58 |
+
|
59 |
+
for idx, module in enumerate(model.modules):
|
60 |
+
if idx == 0 or idx >= (len(model.modules) - 2) or module.name != 'MLP':
|
61 |
+
continue
|
62 |
+
model.modules[idx] = ExLlamaV2ModuleWrapper(module, control_vector)
|
63 |
+
|
64 |
+
def __init__(self, module, control_vector):
|
65 |
+
self.module = module
|
66 |
+
self.control_vector = control_vector
|
67 |
+
|
68 |
+
def __getattribute__(self, name):
|
69 |
+
if name == 'forward':
|
70 |
+
return object.__getattribute__(self, 'wrapped_forward')
|
71 |
+
|
72 |
+
try:
|
73 |
+
return getattr(object.__getattribute__(self, 'module'), name)
|
74 |
+
except AttributeError:
|
75 |
+
pass
|
76 |
+
return object.__getattribute__(self, name)
|
77 |
+
|
78 |
+
def wrapped_forward(self, *args, **kwargs):
|
79 |
+
x = self.module.forward(*args, **kwargs)
|
80 |
+
try:
|
81 |
+
x += self.control_vector[self.module.layer_idx].clone().to(x.device)
|
82 |
+
except IndexError:
|
83 |
+
pass
|
84 |
+
return x
|
85 |
+
|
test_inference.py
CHANGED
@@ -64,6 +64,7 @@ parser.add_argument("-sl", "--stream_layers", action = "store_true", help = "Loa
|
|
64 |
parser.add_argument("-sp", "--standard_perplexity", choices = ["wiki2"], help = "Run standard (HF) perplexity test, stride 512 (experimental)")
|
65 |
parser.add_argument("-rr", "--rank_reduce", type = str, help = "Rank-reduction for MLP layers of model, in reverse order (for experimentation)")
|
66 |
parser.add_argument("-mol", "--max_output_len", type = int, help = "Set max output chunk size (incompatible with ppl tests)")
|
|
|
67 |
|
68 |
# Initialize model and tokenizer
|
69 |
|
@@ -107,6 +108,10 @@ model, tokenizer = model_init.init(
|
|
107 |
)
|
108 |
cache = None
|
109 |
|
|
|
|
|
|
|
|
|
110 |
# Auto split
|
111 |
|
112 |
if not model.loaded and not args.stream_layers:
|
|
|
64 |
parser.add_argument("-sp", "--standard_perplexity", choices = ["wiki2"], help = "Run standard (HF) perplexity test, stride 512 (experimental)")
|
65 |
parser.add_argument("-rr", "--rank_reduce", type = str, help = "Rank-reduction for MLP layers of model, in reverse order (for experimentation)")
|
66 |
parser.add_argument("-mol", "--max_output_len", type = int, help = "Set max output chunk size (incompatible with ppl tests)")
|
67 |
+
parser.add_argument("-cv", "--control_vectors", type = str, help = "List of control vectors to apply. Format: topic:direction:weight, e.g. -cv language:simple:0.5")
|
68 |
|
69 |
# Initialize model and tokenizer
|
70 |
|
|
|
108 |
)
|
109 |
cache = None
|
110 |
|
111 |
+
if args.control_vectors:
|
112 |
+
from exl2_wrapper import ExLlamaV2ModuleWrapper
|
113 |
+
ExLlamaV2ModuleWrapper.wrap(model, args.control_vectors)
|
114 |
+
|
115 |
# Auto split
|
116 |
|
117 |
if not model.loaded and not args.stream_layers:
|