File size: 9,468 Bytes
5541839
 
e7b25e5
 
 
5541839
e7b25e5
 
 
 
 
 
 
 
 
 
 
 
 
 
5541839
 
e7b25e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5541839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f6b890
5541839
 
 
 
 
 
 
68282fe
5541839
 
 
 
 
 
1189142
68282fe
5541839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb98bd6
5541839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f6b890
bee2923
5541839
 
 
 
 
 
 
 
 
 
f776cf4
5541839
 
 
 
 
 
 
 
 
9f6b890
0bddf4c
5541839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b25e5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
language:
- en
- ja
license: apache-2.0
library_name: transformers
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
inference: false
model-index:
- name: llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 26.88
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 44.78
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 23.12
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 45.19
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.67
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0
      name: Open LLM Leaderboard
---
# llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0

This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan.

| Model Variant | 
| :--- |
|**Instruction models**|
| [llm-jp-13b-instruct-full-jaster-v1.0](https://huggingface.co./llm-jp/llm-jp-13b-instruct-full-jaster-v1.0) |
| [llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0](https://huggingface.co./llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0) |
| [llm-jp-13b-instruct-full-dolly-oasst-v1.0](https://huggingface.co./llm-jp/llm-jp-13b-instruct-full-dolly-oasst-v1.0) |
| [llm-jp-13b-instruct-lora-jaster-v1.0](https://huggingface.co./llm-jp/llm-jp-13b-instruct-lora-jaster-v1.0) | 
| [llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0](https://huggingface.co./llm-jp/llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0) | 
| [llm-jp-13b-instruct-lora-dolly-oasst-v1.0](https://huggingface.co./llm-jp/llm-jp-13b-instruct-lora-dolly-oasst-v1.0) | 


|  | 
| :--- |
|**Pre-trained models**|
| [llm-jp-13b-v1.0](https://huggingface.co./llm-jp/llm-jp-13b-v1.0) | 
| [llm-jp-1.3b-v1.0](https://huggingface.co./llm-jp/llm-jp-1.3b-v1.0) | 
Checkpoints format: Hugging Face Transformers (Megatron-DeepSpeed format models are available [here](https://huggingface.co./llm-jp/llm-jp-13b-v1.0-mdsfmt))


## Required Libraries and Their Versions

- torch>=2.0.0
- transformers>=4.34.0
- tokenizers>=0.14.0
- accelerate==0.23.0

## Usage

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0")
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0", device_map="auto", torch_dtype=torch.float16)
text = "自然言語処理とは何か"
text = text + "### 回答:"
tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device)
with torch.no_grad():
    output = model.generate(
        tokenized_input,
        max_new_tokens=100,
        do_sample=True,
        top_p=0.95,
        temperature=0.7,
    )[0]
print(tokenizer.decode(output))
```


## Model Details

- **Model type:** Transformer-based Language Model
- **Total seen tokens:** 300B

|Model|Params|Layers|Hidden size|Heads|Context length|
|:---:|:---:|:---:|:---:|:---:|:---:|
|13b model|13b|40|5120|40|2048|
|1.3b model|1.3b|24|2048|16|2048|


## Training

- **Pre-training:**
  - **Hardware:** 96 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
  - **Software:** Megatron-DeepSpeed

- **Instruction tuning:**
  - **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
  - **Software:** [TRL](https://github.com/huggingface/trl), [PEFT](https://github.com/huggingface/peft), and [DeepSpeed](https://github.com/microsoft/DeepSpeed)

## Tokenizer
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
The vocabulary entries were converted from [`llm-jp-tokenizer v2.1 (50k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.1).
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure.
- **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires `tokenizers>=0.14.0`
- **Training algorithm:** SentencePiece Unigram byte-fallback
- **Training data:** A subset of the datasets for model pre-training
- **Vocabulary size:** 50,570 (mixed vocabulary of Japanese, English, and source code)


## Datasets

### Pre-training

The models have been pre-trained using a blend of the following datasets.

| Language | Dataset | Tokens|
|:---:|:---:|:---:|
|Japanese|[Wikipedia](https://huggingface.co./datasets/wikipedia)|1.5B
||[mC4](https://huggingface.co./datasets/mc4)|136B
|English|[Wikipedia](https://huggingface.co./datasets/wikipedia)|5B
||[The Pile](https://huggingface.co./datasets/EleutherAI/pile)|135B
|Codes|[The Stack](https://huggingface.co./datasets/bigcode/the-stack)|10B

The pre-training was continuously conducted using a total of 10 folds of non-overlapping data, each consisting of approximately 27-28B tokens.
We finalized the pre-training with additional (potentially) high-quality 27B tokens data obtained from the identical source datasets listed above used for the 10-fold data.

### Instruction tuning

The models have been fine-tuned on the following datasets.
 
| Language | Dataset | description |
|:---|:---:|:---:|
|Japanese|[jaster](https://github.com/llm-jp/llm-jp-eval)| An automatically transformed data from the existing Japanese NLP datasets |
||[databricks-dolly-15k](https://huggingface.co./datasets/databricks/databricks-dolly-15k)| A translated one by DeepL in LLM-jp |
||[OpenAssistant Conversations Dataset](https://huggingface.co./datasets/OpenAssistant/oasst1)| A translated one by DeepL in LLM-jp |


## Evaluation
You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) for the evaluation.

## Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.


## Send Questions to

llm-jp(at)nii.ac.jp


## License

[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)


## Model Card Authors
*The names are listed in alphabetical order.*

Hirokazu Kiyomaru, Hiroshi Matsuda, Jun Suzuki, Namgi Han, Saku Sugawara, Shota Sasaki, Shuhei Kurita, Taishi Nakamura, Takumi Okamoto.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_llm-jp__llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |31.77|
|AI2 Reasoning Challenge (25-Shot)|26.88|
|HellaSwag (10-Shot)              |44.78|
|MMLU (5-Shot)                    |23.12|
|TruthfulQA (0-shot)              |45.19|
|Winogrande (5-shot)              |50.67|
|GSM8k (5-shot)                   | 0.00|