--- license: apache-2.0 base_model: google/mt5-base tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-base-xlsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum config: ukrainian split: train args: ukrainian metrics: - name: Rouge1 type: rouge value: 2.98 --- # mt5-base-xlsum This model is a fine-tuned version of [google/mt5-base](https://huggingface.co./google/mt5-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.0396 - Rouge1: 2.98 - Rouge2: 0.1333 - Rougel: 3.0267 - Rougelsum: 2.9933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 5.3745 | 1.0 | 500 | 2.5041 | 1.0696 | 0.13 | 1.062 | 1.0629 | | 3.413 | 2.0 | 1000 | 2.2178 | 1.8333 | 0.1333 | 1.84 | 1.8633 | | 3.1052 | 3.0 | 1500 | 2.0844 | 3.14 | 0.2667 | 3.18 | 3.1733 | | 2.9673 | 4.0 | 2000 | 2.0396 | 2.98 | 0.1333 | 3.0267 | 2.9933 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1