Update pipeline example
Browse files
README.md
CHANGED
@@ -10,7 +10,6 @@ tags:
|
|
10 |
datasets:
|
11 |
- lmms-lab/LLaVA-OneVision-Data
|
12 |
pipeline_tag: image-text-to-text
|
13 |
-
inference: false
|
14 |
arxiv: 2408.03326
|
15 |
library_name: transformers
|
16 |
---
|
@@ -58,36 +57,24 @@ Below we used [`"llava-hf/llava-onevision-qwen2-0.5b-ov-hf"`](https://huggingfac
|
|
58 |
|
59 |
```python
|
60 |
from transformers import pipeline
|
61 |
-
from PIL import Image
|
62 |
-
import requests
|
63 |
-
from transformers import AutoProcessor
|
64 |
-
|
65 |
-
|
66 |
-
model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
|
67 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
68 |
-
pipe = pipeline("image-to-text", model=model_id)
|
69 |
-
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
70 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
conversation = [
|
75 |
{
|
76 |
-
|
77 |
"role": "user",
|
78 |
"content": [
|
|
|
79 |
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
|
80 |
-
{"type": "image"},
|
81 |
],
|
82 |
},
|
83 |
]
|
84 |
-
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
85 |
|
86 |
-
|
87 |
-
print(
|
88 |
-
>>> {
|
89 |
```
|
90 |
|
|
|
91 |
### Using pure `transformers`:
|
92 |
|
93 |
Below is an example script to run generation in `float16` precision on a GPU device:
|
|
|
10 |
datasets:
|
11 |
- lmms-lab/LLaVA-OneVision-Data
|
12 |
pipeline_tag: image-text-to-text
|
|
|
13 |
arxiv: 2408.03326
|
14 |
library_name: transformers
|
15 |
---
|
|
|
57 |
|
58 |
```python
|
59 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
pipe = pipeline("image-text-to-text", model="llava-onevision-qwen2-0.5b-ov-hf")
|
62 |
+
messages = [
|
|
|
63 |
{
|
|
|
64 |
"role": "user",
|
65 |
"content": [
|
66 |
+
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"},
|
67 |
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
|
|
|
68 |
],
|
69 |
},
|
70 |
]
|
|
|
71 |
|
72 |
+
out = pipe(text=messages, max_new_tokens=20)
|
73 |
+
print(out)
|
74 |
+
>>> [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg'}, {'type': 'text', 'text': 'What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud'}]}], 'generated_text': 'Lava'}]
|
75 |
```
|
76 |
|
77 |
+
|
78 |
### Using pure `transformers`:
|
79 |
|
80 |
Below is an example script to run generation in `float16` precision on a GPU device:
|