RaushanTurganbay HF staff commited on
Commit
f717a66
·
verified ·
1 Parent(s): 8c85e9a

Update pipeline example

Browse files
Files changed (1) hide show
  1. README.md +7 -18
README.md CHANGED
@@ -44,33 +44,22 @@ The model supports multi-image and multi-prompt generation. Meaning that you can
44
  Below we used [`"llava-hf/llava-1.5-7b-hf"`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) checkpoint.
45
 
46
  ```python
47
- from transformers import pipeline, AutoProcessor
48
- from PIL import Image
49
- import requests
50
-
51
- model_id = "llava-hf/llava-1.5-7b-hf"
52
- pipe = pipeline("image-to-text", model=model_id)
53
- url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
54
- image = Image.open(requests.get(url, stream=True).raw)
55
 
56
- # Define a chat history and use `apply_chat_template` to get correctly formatted prompt
57
- # Each value in "content" has to be a list of dicts with types ("text", "image")
58
- conversation = [
59
  {
60
  "role": "user",
61
  "content": [
 
62
  {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
63
- {"type": "image"},
64
  ],
65
  },
66
  ]
67
- processor = AutoProcessor.from_pretrained(model_id)
68
-
69
- prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
70
 
71
- outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
72
- print(outputs)
73
- >>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
74
  ```
75
 
76
  ### Using pure `transformers`:
 
44
  Below we used [`"llava-hf/llava-1.5-7b-hf"`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) checkpoint.
45
 
46
  ```python
47
+ from transformers import pipeline
 
 
 
 
 
 
 
48
 
49
+ pipe = pipeline("image-text-to-text", model="llava-hf/llava-1.5-7b-hf")
50
+ messages = [
 
51
  {
52
  "role": "user",
53
  "content": [
54
+ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"},
55
  {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
 
56
  ],
57
  },
58
  ]
 
 
 
59
 
60
+ out = pipe(text=messages, max_new_tokens=20)
61
+ print(out)
62
+ >>> [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg'}, {'type': 'text', 'text': 'What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud'}]}], 'generated_text': 'Lava'}]
63
  ```
64
 
65
  ### Using pure `transformers`: