File size: 66,589 Bytes
a8b8fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple

import torch
import torch.utils.checkpoint
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
from transformers.modeling_outputs import (
    CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.utils import ModelOutput, logging

from .configuration_llama_moe import LlamaMoEConfig

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LlamaMoEConfig"


@dataclass
class CalculatorOutput(ModelOutput):
    hidden_states: Optional[torch.FloatTensor] = None
    num_dropped_tokens: Optional[int] = None


@dataclass
class BaseMoEModelOutputWithPast(ModelOutput):
    """
    Args:
        num_dropped_tokens: layer idx to the number of dropped tokens
    """

    last_hidden_state: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    balance_loss: Optional[float] = None
    num_dropped_tokens: Optional[Tuple[torch.Tensor]] = None
    gate_load: Optional[Tuple[list]] = None
    gate_importance: Optional[Tuple[list]] = None


@dataclass
class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
    balance_loss: Optional[float] = None
    num_dropped_tokens: Optional[Tuple[int]] = None
    gate_load: Optional[Tuple[list[torch.Tensor]]] = None
    gate_importance: Optional[Tuple[list[torch.Tensor]]] = None


@dataclass
class MoEMlpOutput(ModelOutput):
    hidden_states: Optional[torch.FloatTensor] = None
    balance_loss: Optional[torch.FloatTensor] = None
    num_dropped_tokens: Optional[int] = None
    gate_load: Optional[list] = None
    gate_importance: Optional[list] = None


def _make_causal_mask(
    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class LlamaRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
        )


class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
    """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
        t = t / self.scaling_factor

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)


class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
    """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
            self.register_buffer("inv_freq", inv_freq)

        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
    # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
    cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
    sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
    cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class LlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.pretraining_tp = config.pretraining_tp
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        if self.pretraining_tp > 1:
            slice = self.intermediate_size // self.pretraining_tp
            gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
            up_proj_slices = self.up_proj.weight.split(slice, dim=0)
            down_proj_slices = self.down_proj.weight.split(slice, dim=1)

            gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
            up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)

            intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
            down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
            down_proj = sum(down_proj)
        else:
            down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

        return down_proj


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class LlamaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: LlamaMoEConfig):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.pretraining_tp = config.pretraining_tp
        self.max_position_embeddings = config.max_position_embeddings

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        self._init_rope()

    def _init_rope(self):
        if self.config.rope_scaling is None:
            self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
        else:
            scaling_type = self.config.rope_scaling["type"]
            scaling_factor = self.config.rope_scaling["factor"]
            if scaling_type == "linear":
                self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
                    self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
                )
            elif scaling_type == "dynamic":
                self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
                    self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
                )
            else:
                raise ValueError(f"Unknown RoPE scaling type {scaling_type}")

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        if self.pretraining_tp > 1:
            key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
            query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
            key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
            value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)

            query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
            query_states = torch.cat(query_states, dim=-1)

            key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
            key_states = torch.cat(key_states, dim=-1)

            value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
            value_states = torch.cat(value_states, dim=-1)

        else:
            query_states = self.q_proj(hidden_states)
            key_states = self.k_proj(hidden_states)
            value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights + attention_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        if self.pretraining_tp > 1:
            attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
            o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
            attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
        else:
            attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class TopKBalancedNoisyGate(nn.Module):
    def __init__(
        self,
        input_size,
        num_experts,
        num_selects,
        gate_network="mlp",
        use_softmax=True,
        use_balance=True,
        balance_loss_weight=1e-2,
        add_noise=True,
        noise_epsilon=1e-2,
    ):
        super(TopKBalancedNoisyGate, self).__init__()
        assert num_selects <= num_experts
        self.input_size = input_size
        self.num_experts = num_experts
        self.num_selects = num_selects

        self.gate_network_type = gate_network
        self.gate_network = self.get_gate_network(gate_network, input_size, num_experts)

        self.use_softmax = use_softmax
        self.softmax = nn.Softmax(1)

        self.use_balance = use_balance
        self.balance_loss_weight = balance_loss_weight

        # add_noise
        self.add_noise = add_noise
        self.noise_epsilon = noise_epsilon
        self.warned = False
        if self.add_noise:
            self.weight_noise = nn.Linear(input_size, num_experts, bias=False)
            self.weight_noise.weight.data = torch.zeros(
                (num_experts, input_size),
                requires_grad=True,
                device=self.weight_noise.weight.data.device,
                dtype=self.weight_noise.weight.data.dtype,
            )
            self.mean = 0.0
            self.std = 1.0
            self.normal = Normal(self.mean, self.std)
            self.softplus = nn.Softplus()

        self.reset_parameters()

    def get_gate_network(self, gate_type, input_size, num_experts):
        gate_type = gate_type.lower()

        if gate_type == "linear":
            gate_network = nn.Linear(input_size, num_experts, bias=False)
            nn.init.zeros_(gate_network.weight)
        elif gate_type == "mlp":
            gate_network = torch.nn.Sequential(
                torch.nn.Linear(input_size, num_experts, bias=False),
                torch.nn.Tanh(),
                torch.nn.Linear(num_experts, num_experts, bias=False),
            )
        else:
            raise ValueError(f'Unexpected gate_type: {gate_type}.')

        return gate_network

    def reset_gate_network(self):
        if "gate_network_type" not in vars(self):
            raise KeyError(f"{type(self)} does not have a gate network.")
        else:
            self.gate_network = self.get_gate_network(
                self.gate_network_type, self.input_size, self.num_experts
            )

    def reset_parameters(self):
        if self.add_noise:
            nn.init.zeros_(self.weight_noise.weight)
            # nn.init.zeros_(self.weight_noise)

    def cv_squared(self, x, eps=1e-10):
        """The squared coefficient of variation of a sample.
        Useful as a loss to encourage a positive distribution to be more uniform.
        Epsilons added for numerical stability.
        Returns 0 for an empty Tensor.
        Args:
        x: a `Tensor`.
        Returns:
        a `Scalar`.s
        """
        if x.shape[0] == 1:
            return torch.tensor(0.0, device=x.device)
        return x.float().var() / (x.float().mean() ** 2 + eps)

    def forward(self, x):
        logits_gate = self.gate_network(x)
        if self.training and self.add_noise:
            noise_mm = self.weight_noise(x)
            noise_control = self.softplus(noise_mm) + self.noise_epsilon
            logits_noise = torch.randn_like(logits_gate) * noise_control
            logits = logits_gate + logits_noise
        else:
            logits = logits_gate

        top_logits, top_indices = logits.topk(min(self.num_selects + 1, self.num_experts), dim=1)  # ι€‰ζ‹©εΉΆζŽ’εΊε‰k+1δΈͺ权重
        top_k_logits = top_logits[:, :self.num_selects]
        top_k_indices = top_indices[:, :self.num_selects]
        top_k_scores = self.softmax(top_k_logits.to(torch.float32)) if self.use_softmax else top_k_logits
        top_k_scores = top_k_scores.to(logits.dtype)

        zeros = torch.zeros_like(logits, requires_grad=True, device=logits.device)
        scores_filtered = zeros.scatter(dim=1, index=top_k_indices, src=top_k_scores)  # shape(batch_size, num_experts)
        importance = scores_filtered.sum(0)  # shape(num_experts)

        if self.training:
            if self.add_noise and self.num_selects != self.num_experts:
                batch_size = top_logits.size(0)
                m = top_logits.size(1)
                top_values_flat = top_logits.flatten()
                threshold_positions_if_in = torch.arange(batch_size, device=x.device) * m + self.num_selects
                threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
                is_in = torch.gt(logits_noise, threshold_if_in)
                threshold_positions_if_out = threshold_positions_if_in - 1
                threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
                # is each value currently in the top k.
                prob_if_in = self.normal.cdf((logits_gate - threshold_if_in) / noise_control)
                prob_if_out = self.normal.cdf((logits_gate - threshold_if_out) / noise_control)
                prob = torch.where(is_in, prob_if_in, prob_if_out)
                load = prob.sum(0)
            else:
                load = (scores_filtered > 0).sum(0)
                if not self.add_noise and not self.warned:
                    warnings.warn('Gradient-trackable implementation for load calculation is only available when "add_noise=True". '
                                  'Training without noise will block the gradient from "load" path and lead to inconsistency in optimization objectives.')
                    self.warned = True
        else:
            load = (scores_filtered > 0).sum(0)

        if self.use_balance:
            balance_loss = self.cv_squared(importance) + self.cv_squared(load)
            balance_loss *= self.balance_loss_weight
        else:
            balance_loss = torch.tensor(-100.0, device=x.device)

        return {
            "topK_indices": top_k_indices,
            "topK_scores": top_k_scores,
            "balance_loss": balance_loss,
            "load": load,
            "importance": importance,
        }


class LinearGLUExperts(nn.Module):
    """
    Modified from transformers.models.llama.modeling_llama.LlamaMLP
    """

    __constants__ = [
        "bias",
        "in_features",
        "hidden_features",
        "out_features",
        "hidden_act",
        "num_experts",
        "size_experts",
    ]

    def __init__(
        self,
        in_features,
        hidden_features,
        out_features,
        hidden_act,
        num_experts,
        size_experts=None,
        bias=True,
        device=None,
        dtype=None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super(LinearGLUExperts, self).__init__()
        self.in_features = in_features
        self.hidden_features = hidden_features
        self.out_features = out_features
        self.hidden_act = hidden_act
        self.num_experts = num_experts

        if size_experts is None:
            # all experts share the same number of hidden neurons
            assert hidden_features % num_experts == 0
            size_per_expert = hidden_features // num_experts
            size_experts = [size_per_expert for _ in range(num_experts)]
        else:
            # use specified expert sizes
            assert (
                len(size_experts) == num_experts
                and sum(size_experts) == hidden_features
            )
        self.size_experts = size_experts

        self.act_fn = ACT2FN[hidden_act]

        self.weight_gate = nn.ParameterList()
        self.weight_up = nn.ParameterList()
        self.weight_down = nn.ParameterList()

        for i in range(num_experts):
            # this matrix will be transposed when performing linear forwarding
            this_expert_weight_gate = nn.Parameter(
                torch.empty((size_experts[i], in_features), **factory_kwargs)
            )
            # this matrix will be transposed when performing linear forwarding
            this_expert_weight_up = nn.Parameter(
                torch.empty((size_experts[i], in_features), **factory_kwargs)
            )
            # this matrix will be transposed when performing linear forwarding
            this_expert_weight_down = nn.Parameter(
                torch.empty((out_features, size_experts[i]), **factory_kwargs)
            )
            self.weight_gate.append(this_expert_weight_gate)
            self.weight_up.append(this_expert_weight_up)
            self.weight_down.append(this_expert_weight_down)

        if bias:
            self.bias_gate = nn.ParameterList()
            self.bias_up = nn.ParameterList()
            self.bias_down = nn.ParameterList()

            for i in range(num_experts):
                this_expert_bias_gate = nn.Parameter(
                    torch.empty((size_experts[i],), **factory_kwargs)
                )
                this_expert_bias_up = nn.Parameter(
                    torch.empty((size_experts[i],), **factory_kwargs)
                )
                this_expert_bias_down = nn.Parameter(
                    torch.empty((out_features,), **factory_kwargs)
                )
                self.bias_gate.append(this_expert_bias_gate)
                self.bias_up.append(this_expert_bias_up)
                self.bias_down.append(this_expert_bias_down)
        else:
            self.register_parameter("bias_gate", None)
            self.register_parameter("bias_up", None)
            self.register_parameter("bias_down", None)

        self.reset_parameters()

    def reset_parameters(self):
        for i in range(self.num_experts):
            nn.init.kaiming_uniform_(self.weight_gate[i], a=math.sqrt(5))
            nn.init.kaiming_uniform_(self.weight_up[i], a=math.sqrt(5))
            nn.init.kaiming_uniform_(self.weight_down[i], a=math.sqrt(5))
            if self.bias_gate is not None:
                fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_gate[i])
                bound = 1 / math.sqrt(fan_in)
                nn.init.uniform_(self.bias_gate[i], -bound, bound)
            if self.bias_up is not None:
                fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_up[i])
                bound = 1 / math.sqrt(fan_in)
                nn.init.uniform_(self.bias_up[i], -bound, bound)
            if self.bias_down is not None:
                fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_down[i])
                bound = 1 / math.sqrt(fan_in)
                nn.init.uniform_(self.bias_down[i], -bound, bound)

    def forward(self, input, i):
        gate = self.act_fn(
            F.linear(
                input,
                self.weight_gate[i],
                self.bias_gate[i] if self.bias_gate is not None else None,
            )
        )
        up = F.linear(
            input,
            self.weight_up[i],
            self.bias_up[i] if self.bias_up is not None else None,
        )
        down = F.linear(
            gate * up,
            self.weight_down[i],
            self.bias_down[i] if self.bias_down is not None else None,
        )
        return down

    def extra_repr(self):
        return (
            "in_features={}, hidden_features={}, out_features={}, hidden_act={},"
            " num_experts={}, size_experts={}, bias={}".format(
                self.in_features,
                self.hidden_features,
                self.out_features,
                self.hidden_act,
                self.num_experts,
                self.size_experts,
                self.bias_gate is not None,
            )
        )


class UniversalCalculator(nn.Module):
    def __init__(
        self,
        experts: LinearGLUExperts,
        multiply_gate_scores=True,
        score_scale_factor=1.0,
        add_weight_norm: bool = False,
    ):
        super(UniversalCalculator, self).__init__()
        self.experts = experts
        # TODO (zhutong): use vmap to boost the training efficiency
        # self.experts_vmap = torch.vmap(self.experts)
        self.multiply_gate_scores = multiply_gate_scores
        self.score_scale_factor = score_scale_factor
        self.num_experts = experts.num_experts
        self.mlp_norm = None
        if multiply_gate_scores and add_weight_norm:
            raise NotImplementedError

    def reset_experts(self):
        self.experts.reset_parameters()

    def forward(
        self, x, topK_indices, topK_scores, expert_batch_size=None, **kwargs
    ) -> CalculatorOutput:
        batch_size = topK_indices.size(0)  # topK_indices: (bsz*seq_len, num_selects)
        num_selects = topK_indices.size(1)
        topK_indices = topK_indices.flatten()  # shape(batch_size*num_selects)
        topK_scores = topK_scores.flatten()  # shape(batch_size*num_selects)
        batch_indices = torch.arange(
            batch_size, device=topK_scores.device
        ).repeat_interleave(num_selects)

        _, index_sorted_topK_indices = topK_indices.sort(0)

        sorted_topK_scores = topK_scores.index_select(0, index_sorted_topK_indices)
        sorted_batch_indices = batch_indices.index_select(0, index_sorted_topK_indices)

        if expert_batch_size is None:
            expert_batch_size = topK_indices.bincount(
                minlength=self.num_experts
            ).tolist()

        sorted_x = x.index_select(0, sorted_batch_indices)
        split_x = torch.split(sorted_x, expert_batch_size, dim=0)

        expert_outputs = [
            self.experts(split_x[i], i)
            for i in range(self.num_experts)
            if split_x[i].shape[0] > 0
        ]

        # (bsz*seq_len*num_selects, hidden_size)
        cat_expert_outputs = torch.cat(expert_outputs, 0)
        output_dim = cat_expert_outputs.size(1)
        if self.multiply_gate_scores:
            if self.mlp_norm is None:
                cat_expert_outputs = torch.mul(
                    cat_expert_outputs,
                    sorted_topK_scores.reshape(-1, 1) * self.score_scale_factor,
                )
                # cat_expert_outputs = torch.mul(cat_expert_outputs, sorted_topK_scores.reshape(-1, 1) * 1.0)
            else:
                cat_expert_outputs = torch.mul(
                    cat_expert_outputs, sorted_topK_scores.reshape(-1, 1)
                )
                cat_expert_outputs = self.mlp_norm(cat_expert_outputs)

        zeros = torch.zeros(
            (batch_size, output_dim),
            device=cat_expert_outputs.device,
            dtype=cat_expert_outputs.dtype,
        )
        y = zeros.index_add(0, sorted_batch_indices, cat_expert_outputs)

        return CalculatorOutput(hidden_states=y, num_dropped_tokens=torch.tensor(-1.0))


class BaseMoELayer(nn.Module):
    def __init__(self):
        super(BaseMoELayer, self).__init__()

        self.gate: TopKBalancedNoisyGate
        self.calculator: UniversalCalculator

    def _create_gate(self, **kwargs):
        self.gate_type = kwargs.get("gate_type", "TopKBalancedNoisyGate")

        if self.gate_type == "TopKBalancedNoisyGate":  # noisy gate
            self.gate = TopKBalancedNoisyGate(
                self.input_size,
                self.num_experts,
                self.num_selects,
                gate_network=kwargs.get("gate_network", "mlp"),
                use_softmax=kwargs.get("gate_use_softmax", True),
                use_balance=kwargs.get("gate_use_balance", True),
                balance_loss_weight=kwargs.get("gate_balance_loss_weight", 1e-2),
                add_noise=kwargs.get("gate_add_noise", True),
                noise_epsilon=kwargs.get("gate_noise_epsilon", 1e-2),
            )
        else:
            raise NotImplementedError

    def _create_calculator(self, experts, **kwargs):
        self.calculator_type = kwargs.get("calculator_type", "UniversalCalculator")

        if self.calculator_type == "UniversalCalculator":  # top K calculator
            self.calculator = UniversalCalculator(
                experts,
                multiply_gate_scores=kwargs.get("multiply_gate_scores", True),
                score_scale_factor=kwargs.get("score_scale_factor", 1.0),
                add_weight_norm=kwargs.get("add_weight_norm", False),
            )
        else:
            raise NotImplementedError

    def forward(self, x) -> MoEMlpOutput:
        original_shape = x.shape[:-1]
        x = x.reshape(-1, self.input_size)
        gate_outputs: dict = self.gate(x)
        calc_outs: CalculatorOutput = self.calculator(x, **gate_outputs)
        y = calc_outs.hidden_states
        y = y.reshape(original_shape + (self.output_size,))

        return MoEMlpOutput(
            hidden_states=y,
            balance_loss=gate_outputs.get("balance_loss"),
            num_dropped_tokens=calc_outs.num_dropped_tokens,
            gate_load=gate_outputs.get("load", torch.tensor(-1)),
            gate_importance=gate_outputs.get("importance", torch.tensor(-1)),
        )

    def set_num_selects(self, num_selects):
        if "num_selects" not in vars(self.gate):
            raise KeyError(f'{self.gate_type} does not have a key named "num_selects".')
        elif num_selects > self.gate.num_experts:
            raise ValueError(
                'The value of "num_selects" must satisfy "num_selects <= num_experts"!'
            )
        elif self.gate_type in ("SwitchBalancedGate",):
            raise ValueError(
                f"{self.gate_type} doesn't support manually setting num_selects."
            )
        else:
            self.num_selects = num_selects
            self.gate.num_selects = num_selects

    def set_gate_use_softmax(self, use_softmax):
        if "use_softmax" not in vars(self.gate):
            raise KeyError(f'{self.gate_type} does not have a key named "use_softmax".')
        else:
            self.gate.use_softmax = use_softmax

    def set_gate_use_balance(self, use_balance):
        if "use_balance" not in vars(self.gate):
            raise KeyError(f'{self.gate_type} does not have a key named "use_balance".')
        else:
            self.gate.use_balance = use_balance

    def set_gate_balance_loss_weight(self, balance_loss_weight):
        if "balance_loss_weight" not in vars(self.gate):
            raise KeyError(
                f'{self.gate_type} does not have a key named "balance_loss_weight".'
            )
        else:
            self.gate.balance_loss_weight = balance_loss_weight

    def set_gate_add_noise(self, add_noise):
        if "add_noise" not in vars(self.gate):
            raise KeyError(f'{self.gate_type} does not have a key named "add_noise".')
        else:
            self.gate.add_noise = add_noise

    def set_gate_noise_epsilon(self, noise_epsilon):
        if "noise_epsilon" not in vars(self.gate):
            raise KeyError(
                f'{self.gate_type} does not have a key named "noise_epsilon".'
            )
        else:
            self.gate.noise_epsilon = noise_epsilon

    def set_calculator_multiply_gate_scores(self, multiply_gate_scores):
        if "multiply_gate_scores" not in vars(self.calculator):
            raise KeyError(
                f'{self.gate_type} does not have a key named "multiply_gate_scores".'
            )
        else:
            self.calculator.multiply_gate_scores = multiply_gate_scores

    def set_calculator_score_scale_factor(self, score_scale_factor):
        if "score_scale_factor" not in vars(self.calculator):
            raise KeyError(
                f'{self.gate_type} does not have a key named "score_scale_factor".'
            )
        else:
            self.calculator.score_scale_factor = score_scale_factor

    def set_calculator_drop_tokens(self, drop_tokens):
        if "drop_tokens" not in vars(self.calculator):
            raise KeyError(f'{self.gate_type} does not have a key named "drop_tokens".')
        elif (
            drop_tokens
            and self.calculator.dropped_padding != "zero"
            and self.input_size != self.output_size
        ):
            warnings.warn(
                'Setting "drop_tokens=True" without zero dropped padding when "input_size != output_size" will cause error!'
            )
        else:
            self.calculator.drop_tokens = drop_tokens

    def set_calculator_dropped_padding(self, dropped_padding):
        if "dropped_padding" not in vars(self.calculator):
            raise KeyError(
                f'{self.gate_type} does not have a key named "dropped_padding".'
            )
        elif dropped_padding not in self.calculator.available_dropped_padding_choices:
            raise ValueError(
                f"'dropped_padding' type not available! (available choices: {self.calculator.available_dropped_padding_choices})"
            )
        elif (
            self.calculator.drop_tokens
            and dropped_padding != "zero"
            and self.input_size != self.output_size
        ):
            warnings.warn(
                f'Setting "dropped_padding={dropped_padding}" with "drop_tokens=True" when "input_size != output_size" will cause error!'
            )
        else:
            self.calculator.dropped_padding = dropped_padding

    def set_calculator_capacity_factor(self, capacity_factor):
        if "capacity_factor" not in vars(self.calculator):
            raise KeyError(
                f'{self.gate_type} does not have a key named "capacity_factor".'
            )
        else:
            self.calculator.capacity_factor = capacity_factor

    def reset_gate_network(self):
        self.gate.reset_gate_network()

    def reset_experts(self):
        self.calculator.reset_experts()


class LinearGLUMoELayer(BaseMoELayer):
    def __init__(
        self,
        input_size,
        hidden_size,
        output_size,
        hidden_act,
        num_experts,
        num_selects,
        size_experts=None,
        bias=True,
        **kwargs,
    ):
        super(LinearGLUMoELayer, self).__init__()
        assert num_selects <= num_experts
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.hidden_act = hidden_act
        self.num_experts = num_experts
        self.num_selects = num_selects
        self.size_experts = size_experts
        self.bias = bias

        experts = LinearGLUExperts(
            input_size,
            hidden_size,
            output_size,
            hidden_act,
            num_experts,
            size_experts=size_experts,
            bias=bias,
        )

        self._create_gate(**kwargs)
        self._create_calculator(experts, **kwargs)


class LlamaMoEDecoderLayer(nn.Module):
    def __init__(self, config: LlamaMoEConfig, layer_index):
        super().__init__()

        self.hidden_size = config.hidden_size
        self.self_attn = LlamaAttention(config=config)
        self.mlp = LlamaMLP(config)
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        gating_config = {
            # all gates
            "gate_type": config.gate_type,
            "gate_network": config.gate_network,
            "gate_use_softmax": config.gate_use_softmax,
            "gate_use_balance": config.gate_use_balance,
            "gate_balance_loss_weight": config.gate_balance_loss_weight,
            "gate_add_noise": config.gate_add_noise,
            # TopKBalancedNoisyGate
            "gate_noise_epsilon": config.gate_noise_epsilon,
        }
        calculator_config = {
            # all calculators
            "calculator_type": config.calculator_type,
            "multiply_gate_scores": config.multiply_gate_scores,
            "score_scale_factor": (
                config.score_scale_factor[layer_index]
                if isinstance(config.score_scale_factor, list)
                else config.score_scale_factor
            ),
            "add_weight_norm": config.add_weight_norm,
            # SwitchDropTokenCalculator
            "drop_tokens": config.drop_tokens,
            "dropped_padding": config.dropped_padding,
            "capacity_factor": config.capacity_factor,
        }

        self.mlp = LinearGLUMoELayer(
            input_size=self.hidden_size,
            hidden_size=config.intermediate_size,
            output_size=self.hidden_size,
            hidden_act=config.hidden_act,
            num_experts=config.num_experts,
            num_selects=config.num_selects,
            size_experts=(
                config.size_experts[layer_index]
                if config.size_experts is not None
                else None
            ),
            bias=False,
            **gating_config,
            **calculator_config,
        )

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_ids=None,
        past_key_value=None,
        output_attentions=False,
        use_cache=False,
    ) -> tuple:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        mlp_outs: MoEMlpOutput = self.mlp(hidden_states)
        hidden_states = residual + mlp_outs.hidden_states

        outputs = (
            hidden_states,
            mlp_outs.balance_loss,
            mlp_outs.num_dropped_tokens,
            mlp_outs.gate_load,
            mlp_outs.gate_importance,
        )
        if output_attentions:
            outputs += (self_attn_weights,)
        if use_cache:
            outputs += (present_key_value,)

        return outputs

    def set_moe_num_selects(self, num_selects):
        self.mlp.set_num_selects(num_selects)

    def set_moe_gate_use_softmax(self, use_softmax):
        self.mlp.set_gate_use_softmax(use_softmax)

    def set_moe_gate_use_balance(self, use_balance):
        self.mlp.set_gate_use_balance(use_balance)

    def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
        self.mlp.set_gate_balance_loss_weight(balance_loss_weight)

    def set_moe_gate_add_noise(self, add_noise):
        self.mlp.set_gate_add_noise(add_noise)

    def set_moe_gate_noise_epsilon(self, noise_epsilon):
        self.mlp.set_gate_noise_epsilon(noise_epsilon)

    def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
        self.mlp.set_calculator_multiply_gate_scores(multiply_gate_scores)

    def set_moe_calculator_score_scale_factor(self, score_scale_factor):
        self.mlp.set_calculator_score_scale_factor(score_scale_factor)

    def set_moe_calculator_drop_tokens(self, drop_tokens):
        self.mlp.set_calculator_drop_tokens(drop_tokens)

    def set_moe_calculator_dropped_padding(self, dropped_padding):
        self.mlp.set_calculator_dropped_padding(dropped_padding)

    def set_moe_calculator_capacity_factor(self, capacity_factor):
        self.mlp.set_calculator_capacity_factor(capacity_factor)

    def reset_gate_network(self):
        self.mlp.reset_gate_network()

    def reset_experts(self):
        self.mlp.reset_experts()


class LlamaMoEPreTrainedModel(PreTrainedModel):
    config_class = LlamaMoEConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlamaMoEDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, LlamaMoEModel):
            module.gradient_checkpointing = value


class LlamaMoEModel(LlamaMoEPreTrainedModel):
    def __init__(self, config: LlamaMoEConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [LlamaMoEDecoderLayer(config, i) for i in range(config.num_hidden_layers)]
        )
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        past_key_values=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both decoder_input_ids and decoder_inputs_embeds at"
                " the same time"
            )
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError(
                "You have to specify either decoder_input_ids or decoder_inputs_embeds"
            )

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length,
                seq_length + past_key_values_length,
                dtype=torch.long,
                device=device,
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past),
                dtype=torch.bool,
                device=inputs_embeds.device,
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask,
            (batch_size, seq_length),
            inputs_embeds,
            past_key_values_length,
        )

        hidden_states = inputs_embeds
        balance_loss = 0.0

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing."
                    " Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        num_dropped_tokens = ()
        gate_load = ()
        gate_importance = ()
        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = (
                past_key_values[idx] if past_key_values is not None else None
            )

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None)

                    return custom_forward

                layer_outputs: tuple = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                    None,
                )
            else:
                layer_outputs: tuple = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]
            if layer_outputs[1] is not None:
                balance_loss += layer_outputs[1]

            if use_cache:
                next_decoder_cache += (layer_outputs[6 if output_attentions else 5],)

            if output_attentions:
                all_self_attns += (layer_outputs[5],)

            num_dropped_tokens += (layer_outputs[2],)
            gate_load += (layer_outputs[3],)
            gate_importance += (layer_outputs[4],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )
        return BaseMoEModelOutputWithPast(
            last_hidden_state=hidden_states,
            balance_loss=balance_loss,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            num_dropped_tokens=num_dropped_tokens,
            gate_load=gate_load,
            gate_importance=gate_importance,
        )

    def update_config(self):
        self.config.vocab_size = self.config.vocab_size
        self.config.max_position_embeddings = self.config.max_position_embeddings
        # ↓↓↓↓↓↓↓↓↓↓↓↓ changed here ↓↓↓↓↓↓↓↓↓↓↓↓ #
        self.config.hidden_size = self.layers[0].mlp.input_size
        self.config.intermediate_size = self.layers[0].mlp.hidden_size
        self.config.num_hidden_layers = len(self.layers)
        self.config.num_attention_heads = self.layers[0].self_attn.num_heads
        self.config.hidden_act = self.layers[0].mlp.hidden_act
        # ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ #
        self.config.initializer_range = self.config.initializer_range
        self.config.rms_norm_eps = self.config.rms_norm_eps
        self.config.pretraining_tp = self.config.pretraining_tp
        self.config.use_cache = self.config.use_cache
        self.config.rope_scaling = self.config.rope_scaling
        self.config._rope_scaling_validation()

        self.config.num_experts = self.layers[0].mlp.num_experts
        self.config.num_selects = self.layers[0].mlp.num_selects
        self.config.size_experts = [
            self.layers[i].mlp.calculator.experts.size_experts
            for i in range(self.config.num_hidden_layers)
        ]

        self.config.gate_type = vars(self.layers[0].mlp).get(
            "gate_type", "TopKBalancedNoisyGate"
        )
        self.config.gate_network = vars(self.layers[0].mlp.gate).get(
            "gate_network_type", "mlp"
        )
        self.config.gate_use_softmax = vars(self.layers[0].mlp.gate).get(
            "use_softmax", True
        )
        self.config.gate_use_balance = vars(self.layers[0].mlp.gate).get(
            "use_balance", True
        )
        self.config.gate_balance_loss_weight = vars(self.layers[0].mlp.gate).get(
            "balance_loss_weight", 1e-2
        )
        self.config.gate_add_noise = vars(self.layers[0].mlp.gate).get(
            "add_noise", True
        )
        self.config.gate_noise_epsilon = vars(self.layers[0].mlp.gate).get(
            "noise_epsilon", 1e-2
        )

        self.config.calculator_type = vars(self.layers[0].mlp).get(
            "calculator_type", "UniversalCalculator"
        )
        self.config.multiply_gate_scores = vars(self.layers[0].mlp.calculator).get(
            "multiply_gate_scores", True
        )
        self.config.score_scale_factor = [
            vars(self.layers[i].mlp.calculator).get("score_scale_factor", 1.0)
            for i in range(self.config.num_hidden_layers)
        ]
        self.config.drop_tokens = vars(self.layers[0].mlp.calculator).get(
            "drop_tokens", True
        )
        self.config.dropped_padding = vars(self.layers[0].mlp.calculator).get(
            "dropped_padding", "zero"
        )
        self.config.capacity_factor = vars(self.layers[0].mlp.calculator).get(
            "capacity_factor", 1.25
        )

    def set_moe_num_selects(self, num_selects):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_num_selects(num_selects)

    def set_moe_gate_use_softmax(self, use_softmax):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_gate_use_softmax(use_softmax)

    def set_moe_gate_use_balance(self, use_balance):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_gate_use_balance(use_balance)

    def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_gate_balance_loss_weight(balance_loss_weight)

    def set_moe_gate_add_noise(self, add_noise):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_gate_add_noise(add_noise)

    def set_moe_gate_noise_epsilon(self, noise_epsilon):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_gate_noise_epsilon(noise_epsilon)

    def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)

    def set_moe_calculator_score_scale_factor(
        self, score_scale_factor, layer_index=None
    ):
        if layer_index is None:
            for idx, decoder_layer in enumerate(self.layers):
                decoder_layer.set_moe_calculator_score_scale_factor(score_scale_factor)
        else:
            self.layers[layer_index].set_moe_calculator_score_scale_factor(
                score_scale_factor
            )

    def set_moe_calculator_drop_tokens(self, drop_tokens):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_calculator_drop_tokens(drop_tokens)

    def set_moe_calculator_dropped_padding(self, dropped_padding):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_calculator_dropped_padding(dropped_padding)

    def set_moe_calculator_capacity_factor(self, capacity_factor):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.set_moe_calculator_capacity_factor(capacity_factor)

    def reset_gate_network(self):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.reset_gate_network()

    def reset_experts(self):
        for idx, decoder_layer in enumerate(self.layers):
            decoder_layer.reset_experts()


class LlamaMoEForCausalLM(LlamaMoEPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = LlamaMoEModel(config)
        self.pretraining_tp = config.pretraining_tp
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        past_key_values=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs: BaseMoEModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs.last_hidden_state
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
            if outputs.balance_loss is not None and outputs.balance_loss > 0:
                loss += outputs.balance_loss

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return MoECausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            num_dropped_tokens=outputs.num_dropped_tokens,
            balance_loss=outputs.balance_loss,
            gate_load=outputs.gate_load,
            gate_importance=outputs.gate_importance,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past

    def update_config(self):
        self.model.update_config()

    def set_moe_num_selects(self, num_selects):
        self.model.set_moe_num_selects(num_selects)

    def set_moe_gate_use_softmax(self, use_softmax):
        self.model.set_moe_gate_use_softmax(use_softmax)

    def set_moe_gate_use_balance(self, use_balance):
        self.model.set_moe_gate_use_balance(use_balance)

    def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
        self.model.set_moe_gate_balance_loss_weight(balance_loss_weight)

    def set_moe_gate_add_noise(self, add_noise):
        self.model.set_moe_gate_add_noise(add_noise)

    def set_moe_gate_noise_epsilon(self, noise_epsilon):
        self.model.set_moe_gate_noise_epsilon(noise_epsilon)

    def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
        self.model.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)

    def set_moe_calculator_score_scale_factor(
        self, score_scale_factor, layer_index=None
    ):
        self.model.set_moe_calculator_score_scale_factor(
            score_scale_factor, layer_index=layer_index
        )

    def set_moe_calculator_drop_tokens(self, drop_tokens):
        self.model.set_moe_calculator_drop_tokens(drop_tokens)

    def set_moe_calculator_dropped_padding(self, dropped_padding):
        self.model.set_moe_calculator_dropped_padding(dropped_padding)

    def set_moe_calculator_capacity_factor(self, capacity_factor):
        self.model.set_moe_calculator_capacity_factor(capacity_factor)

    def reset_gate_network(self):
        self.model.reset_gate_network()

    def reset_experts(self):
        self.model.reset_experts()