Upload folder using huggingface_hub
Browse files- README.md +70 -0
- config.json +629 -0
- configuration_llama_moe.py +130 -0
- generation_config.json +7 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_llama_moe_hf.py +1690 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- MoE
|
7 |
+
---
|
8 |
+
# LLaMA-MoE-v1-3.5B (4/16) SFT
|
9 |
+
|
10 |
+
[[💻 Code]](https://github.com/pjlab-sys4nlp/llama-moe) | [[📜 Technical Report]](https://github.com/pjlab-sys4nlp/llama-moe/blob/main/docs/LLaMA_MoE.pdf)
|
11 |
+
|
12 |
+
This is the supervised fine-tuned version of [LLaMA-MoE-v1-3_5B-4_16](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-4_16) on [Deita-6k](https://huggingface.co/datasets/hkust-nlp/deita-6k-v0) for 2 epochs.
|
13 |
+
|
14 |
+
|
15 |
+
| Model | \#Activated Experts | \#Experts | \#Activated Params | Foundation Model | SFT Model |
|
16 |
+
| :------------------------ | :-----------------: | :-------: | :----------------: | :---------------------------------------------------------------: | :------------------------------------------------------------------: |
|
17 |
+
| **LLaMA-MoE-3.0B** | 2 | 16 | 3.0B | [🤗 base](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_0B-2_16) | [🤗 SFT](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_0B-2_16-sft) |
|
18 |
+
| **LLaMA-MoE-3.5B (4/16)** | 4 | 16 | 3.5B | [🤗 base](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-4_16) | [🤗 SFT](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-4_16-sft) |
|
19 |
+
| **LLaMA-MoE-3.5B (2/8)** | 2 | 8 | 3.5B | [🤗 base](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-2_8) | [🤗 SFT](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-2_8-sft) |
|
20 |
+
|
21 |
+
|
22 |
+
## 🚀 QuickStart
|
23 |
+
|
24 |
+
```python
|
25 |
+
# python>=3.10
|
26 |
+
|
27 |
+
import torch
|
28 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
29 |
+
|
30 |
+
model_dir = "llama-moe/LLaMA-MoE-v1-3_5B-4_16-sft"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
33 |
+
model.eval()
|
34 |
+
model.cuda()
|
35 |
+
|
36 |
+
input_text = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. human: Give me a three-day plan in Suzhou. gpt:"
|
37 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
38 |
+
input_ids = inputs["input_ids"].cuda()
|
39 |
+
|
40 |
+
pred = model.generate(input_ids, max_length=100, temperature=1.0, do_sample=True, use_cache=True)
|
41 |
+
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
42 |
+
"""
|
43 |
+
Sure, I can provide you with a three-day itinerary in Suzhou. Here's what we can do:
|
44 |
+
|
45 |
+
Day 1:
|
46 |
+
|
47 |
+
* Visit Suzhou Industrial Park, a major commercial and manufacturing district ...
|
48 |
+
"""
|
49 |
+
```
|
50 |
+
|
51 |
+
## 📊 Performance
|
52 |
+
|
53 |
+
| Model | MMLU | ARC-c | HellaSeag | TruthfulQA | MT-Bench |
|
54 |
+
| :------------------------------------- | :---: | :---: | :-------: | :--------: | :------: |
|
55 |
+
| Sheared LLaMA-2.7B ShareGPT | 28.41 | 41.04 | 71.21 | 47.65 | 3.79 |
|
56 |
+
| Sheared LLaMA-2.7B Deita6K (Our Impl.) | 25.24 | 43.69 | 71.70 | 49.00 | 4.06 |
|
57 |
+
| LLaMA-MoE-v1-3.0B (2/16) | 23.61 | 43.43 | 72.28 | 44.24 | 4.15 |
|
58 |
+
| LLaMA-MoE-v1-3.5B (4/16) | 26.49 | 48.29 | 75.10 | 45.91 | 4.60 |
|
59 |
+
| LLaMA-MoE-v1-3.5B (2/8) | 25.53 | 45.99 | 74.95 | 44.39 | 4.72 |
|
60 |
+
|
61 |
+
## 📃 Citation
|
62 |
+
|
63 |
+
```bibtex
|
64 |
+
@misc{llama-moe2023,
|
65 |
+
title={LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training},
|
66 |
+
author={LLaMA-MoE Team},
|
67 |
+
year={2023},
|
68 |
+
publisher={Dec}
|
69 |
+
}
|
70 |
+
```
|
config.json
ADDED
@@ -0,0 +1,629 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-4_16-new",
|
3 |
+
"add_weight_norm": false,
|
4 |
+
"architectures": [
|
5 |
+
"LlamaMoEForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_bias": false,
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_llama_moe.LlamaMoEConfig",
|
11 |
+
"AutoModel": "modeling_llama_moe_hf.LlamaMoEModel",
|
12 |
+
"AutoModelForCausalLM": "modeling_llama_moe_hf.LlamaMoEForCausalLM"
|
13 |
+
},
|
14 |
+
"bos_token_id": 1,
|
15 |
+
"calculator_type": "UniversalCalculator",
|
16 |
+
"capacity_factor": 1.25,
|
17 |
+
"drop_tokens": true,
|
18 |
+
"dropped_padding": "zero",
|
19 |
+
"eos_token_id": 2,
|
20 |
+
"gate_add_noise": true,
|
21 |
+
"gate_balance_loss_weight": 0.01,
|
22 |
+
"gate_network": "mlp",
|
23 |
+
"gate_noise_epsilon": 0.01,
|
24 |
+
"gate_type": "TopKBalancedNoisyGate",
|
25 |
+
"gate_use_balance": true,
|
26 |
+
"gate_use_softmax": true,
|
27 |
+
"gates": "mlp",
|
28 |
+
"hidden_act": "silu",
|
29 |
+
"hidden_size": 4096,
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"intermediate_size": 11008,
|
32 |
+
"max_position_embeddings": 4096,
|
33 |
+
"model_type": "llama_moe",
|
34 |
+
"multiply_gate_scores": true,
|
35 |
+
"num_attention_heads": 32,
|
36 |
+
"num_experts": 16,
|
37 |
+
"num_hidden_layers": 32,
|
38 |
+
"num_key_value_heads": 32,
|
39 |
+
"num_selects": 4,
|
40 |
+
"pad_token_id": 0,
|
41 |
+
"pretraining_tp": 1,
|
42 |
+
"rms_norm_eps": 1e-05,
|
43 |
+
"rope_scaling": null,
|
44 |
+
"rope_theta": 10000.0,
|
45 |
+
"score_scale_factor": 4.0,
|
46 |
+
"size_experts": [
|
47 |
+
[
|
48 |
+
688,
|
49 |
+
688,
|
50 |
+
688,
|
51 |
+
688,
|
52 |
+
688,
|
53 |
+
688,
|
54 |
+
688,
|
55 |
+
688,
|
56 |
+
688,
|
57 |
+
688,
|
58 |
+
688,
|
59 |
+
688,
|
60 |
+
688,
|
61 |
+
688,
|
62 |
+
688,
|
63 |
+
688
|
64 |
+
],
|
65 |
+
[
|
66 |
+
688,
|
67 |
+
688,
|
68 |
+
688,
|
69 |
+
688,
|
70 |
+
688,
|
71 |
+
688,
|
72 |
+
688,
|
73 |
+
688,
|
74 |
+
688,
|
75 |
+
688,
|
76 |
+
688,
|
77 |
+
688,
|
78 |
+
688,
|
79 |
+
688,
|
80 |
+
688,
|
81 |
+
688
|
82 |
+
],
|
83 |
+
[
|
84 |
+
688,
|
85 |
+
688,
|
86 |
+
688,
|
87 |
+
688,
|
88 |
+
688,
|
89 |
+
688,
|
90 |
+
688,
|
91 |
+
688,
|
92 |
+
688,
|
93 |
+
688,
|
94 |
+
688,
|
95 |
+
688,
|
96 |
+
688,
|
97 |
+
688,
|
98 |
+
688,
|
99 |
+
688
|
100 |
+
],
|
101 |
+
[
|
102 |
+
688,
|
103 |
+
688,
|
104 |
+
688,
|
105 |
+
688,
|
106 |
+
688,
|
107 |
+
688,
|
108 |
+
688,
|
109 |
+
688,
|
110 |
+
688,
|
111 |
+
688,
|
112 |
+
688,
|
113 |
+
688,
|
114 |
+
688,
|
115 |
+
688,
|
116 |
+
688,
|
117 |
+
688
|
118 |
+
],
|
119 |
+
[
|
120 |
+
688,
|
121 |
+
688,
|
122 |
+
688,
|
123 |
+
688,
|
124 |
+
688,
|
125 |
+
688,
|
126 |
+
688,
|
127 |
+
688,
|
128 |
+
688,
|
129 |
+
688,
|
130 |
+
688,
|
131 |
+
688,
|
132 |
+
688,
|
133 |
+
688,
|
134 |
+
688,
|
135 |
+
688
|
136 |
+
],
|
137 |
+
[
|
138 |
+
688,
|
139 |
+
688,
|
140 |
+
688,
|
141 |
+
688,
|
142 |
+
688,
|
143 |
+
688,
|
144 |
+
688,
|
145 |
+
688,
|
146 |
+
688,
|
147 |
+
688,
|
148 |
+
688,
|
149 |
+
688,
|
150 |
+
688,
|
151 |
+
688,
|
152 |
+
688,
|
153 |
+
688
|
154 |
+
],
|
155 |
+
[
|
156 |
+
688,
|
157 |
+
688,
|
158 |
+
688,
|
159 |
+
688,
|
160 |
+
688,
|
161 |
+
688,
|
162 |
+
688,
|
163 |
+
688,
|
164 |
+
688,
|
165 |
+
688,
|
166 |
+
688,
|
167 |
+
688,
|
168 |
+
688,
|
169 |
+
688,
|
170 |
+
688,
|
171 |
+
688
|
172 |
+
],
|
173 |
+
[
|
174 |
+
688,
|
175 |
+
688,
|
176 |
+
688,
|
177 |
+
688,
|
178 |
+
688,
|
179 |
+
688,
|
180 |
+
688,
|
181 |
+
688,
|
182 |
+
688,
|
183 |
+
688,
|
184 |
+
688,
|
185 |
+
688,
|
186 |
+
688,
|
187 |
+
688,
|
188 |
+
688,
|
189 |
+
688
|
190 |
+
],
|
191 |
+
[
|
192 |
+
688,
|
193 |
+
688,
|
194 |
+
688,
|
195 |
+
688,
|
196 |
+
688,
|
197 |
+
688,
|
198 |
+
688,
|
199 |
+
688,
|
200 |
+
688,
|
201 |
+
688,
|
202 |
+
688,
|
203 |
+
688,
|
204 |
+
688,
|
205 |
+
688,
|
206 |
+
688,
|
207 |
+
688
|
208 |
+
],
|
209 |
+
[
|
210 |
+
688,
|
211 |
+
688,
|
212 |
+
688,
|
213 |
+
688,
|
214 |
+
688,
|
215 |
+
688,
|
216 |
+
688,
|
217 |
+
688,
|
218 |
+
688,
|
219 |
+
688,
|
220 |
+
688,
|
221 |
+
688,
|
222 |
+
688,
|
223 |
+
688,
|
224 |
+
688,
|
225 |
+
688
|
226 |
+
],
|
227 |
+
[
|
228 |
+
688,
|
229 |
+
688,
|
230 |
+
688,
|
231 |
+
688,
|
232 |
+
688,
|
233 |
+
688,
|
234 |
+
688,
|
235 |
+
688,
|
236 |
+
688,
|
237 |
+
688,
|
238 |
+
688,
|
239 |
+
688,
|
240 |
+
688,
|
241 |
+
688,
|
242 |
+
688,
|
243 |
+
688
|
244 |
+
],
|
245 |
+
[
|
246 |
+
688,
|
247 |
+
688,
|
248 |
+
688,
|
249 |
+
688,
|
250 |
+
688,
|
251 |
+
688,
|
252 |
+
688,
|
253 |
+
688,
|
254 |
+
688,
|
255 |
+
688,
|
256 |
+
688,
|
257 |
+
688,
|
258 |
+
688,
|
259 |
+
688,
|
260 |
+
688,
|
261 |
+
688
|
262 |
+
],
|
263 |
+
[
|
264 |
+
688,
|
265 |
+
688,
|
266 |
+
688,
|
267 |
+
688,
|
268 |
+
688,
|
269 |
+
688,
|
270 |
+
688,
|
271 |
+
688,
|
272 |
+
688,
|
273 |
+
688,
|
274 |
+
688,
|
275 |
+
688,
|
276 |
+
688,
|
277 |
+
688,
|
278 |
+
688,
|
279 |
+
688
|
280 |
+
],
|
281 |
+
[
|
282 |
+
688,
|
283 |
+
688,
|
284 |
+
688,
|
285 |
+
688,
|
286 |
+
688,
|
287 |
+
688,
|
288 |
+
688,
|
289 |
+
688,
|
290 |
+
688,
|
291 |
+
688,
|
292 |
+
688,
|
293 |
+
688,
|
294 |
+
688,
|
295 |
+
688,
|
296 |
+
688,
|
297 |
+
688
|
298 |
+
],
|
299 |
+
[
|
300 |
+
688,
|
301 |
+
688,
|
302 |
+
688,
|
303 |
+
688,
|
304 |
+
688,
|
305 |
+
688,
|
306 |
+
688,
|
307 |
+
688,
|
308 |
+
688,
|
309 |
+
688,
|
310 |
+
688,
|
311 |
+
688,
|
312 |
+
688,
|
313 |
+
688,
|
314 |
+
688,
|
315 |
+
688
|
316 |
+
],
|
317 |
+
[
|
318 |
+
688,
|
319 |
+
688,
|
320 |
+
688,
|
321 |
+
688,
|
322 |
+
688,
|
323 |
+
688,
|
324 |
+
688,
|
325 |
+
688,
|
326 |
+
688,
|
327 |
+
688,
|
328 |
+
688,
|
329 |
+
688,
|
330 |
+
688,
|
331 |
+
688,
|
332 |
+
688,
|
333 |
+
688
|
334 |
+
],
|
335 |
+
[
|
336 |
+
688,
|
337 |
+
688,
|
338 |
+
688,
|
339 |
+
688,
|
340 |
+
688,
|
341 |
+
688,
|
342 |
+
688,
|
343 |
+
688,
|
344 |
+
688,
|
345 |
+
688,
|
346 |
+
688,
|
347 |
+
688,
|
348 |
+
688,
|
349 |
+
688,
|
350 |
+
688,
|
351 |
+
688
|
352 |
+
],
|
353 |
+
[
|
354 |
+
688,
|
355 |
+
688,
|
356 |
+
688,
|
357 |
+
688,
|
358 |
+
688,
|
359 |
+
688,
|
360 |
+
688,
|
361 |
+
688,
|
362 |
+
688,
|
363 |
+
688,
|
364 |
+
688,
|
365 |
+
688,
|
366 |
+
688,
|
367 |
+
688,
|
368 |
+
688,
|
369 |
+
688
|
370 |
+
],
|
371 |
+
[
|
372 |
+
688,
|
373 |
+
688,
|
374 |
+
688,
|
375 |
+
688,
|
376 |
+
688,
|
377 |
+
688,
|
378 |
+
688,
|
379 |
+
688,
|
380 |
+
688,
|
381 |
+
688,
|
382 |
+
688,
|
383 |
+
688,
|
384 |
+
688,
|
385 |
+
688,
|
386 |
+
688,
|
387 |
+
688
|
388 |
+
],
|
389 |
+
[
|
390 |
+
688,
|
391 |
+
688,
|
392 |
+
688,
|
393 |
+
688,
|
394 |
+
688,
|
395 |
+
688,
|
396 |
+
688,
|
397 |
+
688,
|
398 |
+
688,
|
399 |
+
688,
|
400 |
+
688,
|
401 |
+
688,
|
402 |
+
688,
|
403 |
+
688,
|
404 |
+
688,
|
405 |
+
688
|
406 |
+
],
|
407 |
+
[
|
408 |
+
688,
|
409 |
+
688,
|
410 |
+
688,
|
411 |
+
688,
|
412 |
+
688,
|
413 |
+
688,
|
414 |
+
688,
|
415 |
+
688,
|
416 |
+
688,
|
417 |
+
688,
|
418 |
+
688,
|
419 |
+
688,
|
420 |
+
688,
|
421 |
+
688,
|
422 |
+
688,
|
423 |
+
688
|
424 |
+
],
|
425 |
+
[
|
426 |
+
688,
|
427 |
+
688,
|
428 |
+
688,
|
429 |
+
688,
|
430 |
+
688,
|
431 |
+
688,
|
432 |
+
688,
|
433 |
+
688,
|
434 |
+
688,
|
435 |
+
688,
|
436 |
+
688,
|
437 |
+
688,
|
438 |
+
688,
|
439 |
+
688,
|
440 |
+
688,
|
441 |
+
688
|
442 |
+
],
|
443 |
+
[
|
444 |
+
688,
|
445 |
+
688,
|
446 |
+
688,
|
447 |
+
688,
|
448 |
+
688,
|
449 |
+
688,
|
450 |
+
688,
|
451 |
+
688,
|
452 |
+
688,
|
453 |
+
688,
|
454 |
+
688,
|
455 |
+
688,
|
456 |
+
688,
|
457 |
+
688,
|
458 |
+
688,
|
459 |
+
688
|
460 |
+
],
|
461 |
+
[
|
462 |
+
688,
|
463 |
+
688,
|
464 |
+
688,
|
465 |
+
688,
|
466 |
+
688,
|
467 |
+
688,
|
468 |
+
688,
|
469 |
+
688,
|
470 |
+
688,
|
471 |
+
688,
|
472 |
+
688,
|
473 |
+
688,
|
474 |
+
688,
|
475 |
+
688,
|
476 |
+
688,
|
477 |
+
688
|
478 |
+
],
|
479 |
+
[
|
480 |
+
688,
|
481 |
+
688,
|
482 |
+
688,
|
483 |
+
688,
|
484 |
+
688,
|
485 |
+
688,
|
486 |
+
688,
|
487 |
+
688,
|
488 |
+
688,
|
489 |
+
688,
|
490 |
+
688,
|
491 |
+
688,
|
492 |
+
688,
|
493 |
+
688,
|
494 |
+
688,
|
495 |
+
688
|
496 |
+
],
|
497 |
+
[
|
498 |
+
688,
|
499 |
+
688,
|
500 |
+
688,
|
501 |
+
688,
|
502 |
+
688,
|
503 |
+
688,
|
504 |
+
688,
|
505 |
+
688,
|
506 |
+
688,
|
507 |
+
688,
|
508 |
+
688,
|
509 |
+
688,
|
510 |
+
688,
|
511 |
+
688,
|
512 |
+
688,
|
513 |
+
688
|
514 |
+
],
|
515 |
+
[
|
516 |
+
688,
|
517 |
+
688,
|
518 |
+
688,
|
519 |
+
688,
|
520 |
+
688,
|
521 |
+
688,
|
522 |
+
688,
|
523 |
+
688,
|
524 |
+
688,
|
525 |
+
688,
|
526 |
+
688,
|
527 |
+
688,
|
528 |
+
688,
|
529 |
+
688,
|
530 |
+
688,
|
531 |
+
688
|
532 |
+
],
|
533 |
+
[
|
534 |
+
688,
|
535 |
+
688,
|
536 |
+
688,
|
537 |
+
688,
|
538 |
+
688,
|
539 |
+
688,
|
540 |
+
688,
|
541 |
+
688,
|
542 |
+
688,
|
543 |
+
688,
|
544 |
+
688,
|
545 |
+
688,
|
546 |
+
688,
|
547 |
+
688,
|
548 |
+
688,
|
549 |
+
688
|
550 |
+
],
|
551 |
+
[
|
552 |
+
688,
|
553 |
+
688,
|
554 |
+
688,
|
555 |
+
688,
|
556 |
+
688,
|
557 |
+
688,
|
558 |
+
688,
|
559 |
+
688,
|
560 |
+
688,
|
561 |
+
688,
|
562 |
+
688,
|
563 |
+
688,
|
564 |
+
688,
|
565 |
+
688,
|
566 |
+
688,
|
567 |
+
688
|
568 |
+
],
|
569 |
+
[
|
570 |
+
688,
|
571 |
+
688,
|
572 |
+
688,
|
573 |
+
688,
|
574 |
+
688,
|
575 |
+
688,
|
576 |
+
688,
|
577 |
+
688,
|
578 |
+
688,
|
579 |
+
688,
|
580 |
+
688,
|
581 |
+
688,
|
582 |
+
688,
|
583 |
+
688,
|
584 |
+
688,
|
585 |
+
688
|
586 |
+
],
|
587 |
+
[
|
588 |
+
688,
|
589 |
+
688,
|
590 |
+
688,
|
591 |
+
688,
|
592 |
+
688,
|
593 |
+
688,
|
594 |
+
688,
|
595 |
+
688,
|
596 |
+
688,
|
597 |
+
688,
|
598 |
+
688,
|
599 |
+
688,
|
600 |
+
688,
|
601 |
+
688,
|
602 |
+
688,
|
603 |
+
688
|
604 |
+
],
|
605 |
+
[
|
606 |
+
688,
|
607 |
+
688,
|
608 |
+
688,
|
609 |
+
688,
|
610 |
+
688,
|
611 |
+
688,
|
612 |
+
688,
|
613 |
+
688,
|
614 |
+
688,
|
615 |
+
688,
|
616 |
+
688,
|
617 |
+
688,
|
618 |
+
688,
|
619 |
+
688,
|
620 |
+
688,
|
621 |
+
688
|
622 |
+
]
|
623 |
+
],
|
624 |
+
"tie_word_embeddings": false,
|
625 |
+
"torch_dtype": "bfloat16",
|
626 |
+
"transformers_version": "4.36.2",
|
627 |
+
"use_cache": true,
|
628 |
+
"vocab_size": 32000
|
629 |
+
}
|
configuration_llama_moe.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class LlamaMoEConfig(PretrainedConfig):
|
5 |
+
model_type = "llama_moe"
|
6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=32000,
|
11 |
+
hidden_size=4096,
|
12 |
+
intermediate_size=11008,
|
13 |
+
num_hidden_layers=32,
|
14 |
+
num_attention_heads=32,
|
15 |
+
num_key_value_heads=None,
|
16 |
+
hidden_act="silu",
|
17 |
+
max_position_embeddings=2048,
|
18 |
+
initializer_range=0.02,
|
19 |
+
rms_norm_eps=1e-6,
|
20 |
+
use_cache=True,
|
21 |
+
pad_token_id=0,
|
22 |
+
bos_token_id=1,
|
23 |
+
eos_token_id=2,
|
24 |
+
pretraining_tp=1,
|
25 |
+
tie_word_embeddings=False,
|
26 |
+
rope_theta=10000.0,
|
27 |
+
rope_scaling=None,
|
28 |
+
attention_bias=False,
|
29 |
+
attention_dropout=0.0,
|
30 |
+
# -------- moe expert configs --------
|
31 |
+
num_experts=16,
|
32 |
+
num_selects=4,
|
33 |
+
size_experts=None,
|
34 |
+
# -------- moe gate configs --------
|
35 |
+
gate_type="TopKBalancedNoisyGate",
|
36 |
+
gate_network="mlp",
|
37 |
+
gate_use_softmax=True,
|
38 |
+
gate_use_balance=True,
|
39 |
+
gate_balance_loss_weight=1e-2,
|
40 |
+
gate_add_noise=True,
|
41 |
+
# TopKBalancedNoisyGate
|
42 |
+
gate_noise_epsilon=1e-2,
|
43 |
+
# -------- moe calculator configs --------
|
44 |
+
calculator_type="UniversalCalculator",
|
45 |
+
multiply_gate_scores=True,
|
46 |
+
score_scale_factor=1.0,
|
47 |
+
add_weight_norm=False,
|
48 |
+
# SwitchDropTokenCalculator
|
49 |
+
drop_tokens=True,
|
50 |
+
dropped_padding="zero",
|
51 |
+
capacity_factor=1.25,
|
52 |
+
**kwargs,
|
53 |
+
):
|
54 |
+
self.vocab_size = vocab_size
|
55 |
+
self.max_position_embeddings = max_position_embeddings
|
56 |
+
self.hidden_size = hidden_size
|
57 |
+
self.intermediate_size = intermediate_size
|
58 |
+
self.num_hidden_layers = num_hidden_layers
|
59 |
+
self.num_attention_heads = num_attention_heads
|
60 |
+
self.hidden_act = hidden_act
|
61 |
+
self.initializer_range = initializer_range
|
62 |
+
self.rms_norm_eps = rms_norm_eps
|
63 |
+
self.pretraining_tp = pretraining_tp
|
64 |
+
self.use_cache = use_cache
|
65 |
+
self.rope_theta = rope_theta
|
66 |
+
self.rope_scaling = rope_scaling
|
67 |
+
self._rope_scaling_validation()
|
68 |
+
self.attention_bias = attention_bias
|
69 |
+
self.attention_dropout = attention_dropout
|
70 |
+
|
71 |
+
self.num_experts = num_experts
|
72 |
+
self.num_selects = num_selects
|
73 |
+
self.size_experts = size_experts
|
74 |
+
|
75 |
+
self.gate_type = gate_type
|
76 |
+
self.gate_network = gate_network
|
77 |
+
self.gate_use_softmax = gate_use_softmax
|
78 |
+
self.gate_use_balance = gate_use_balance
|
79 |
+
self.gate_balance_loss_weight = gate_balance_loss_weight
|
80 |
+
self.gate_add_noise = gate_add_noise
|
81 |
+
self.gate_noise_epsilon = gate_noise_epsilon
|
82 |
+
|
83 |
+
self.calculator_type = calculator_type
|
84 |
+
self.multiply_gate_scores = multiply_gate_scores
|
85 |
+
self.score_scale_factor = score_scale_factor
|
86 |
+
self.add_weight_norm = add_weight_norm
|
87 |
+
self.drop_tokens = drop_tokens
|
88 |
+
self.dropped_padding = dropped_padding
|
89 |
+
self.capacity_factor = capacity_factor
|
90 |
+
|
91 |
+
# for backward compatibility
|
92 |
+
if num_key_value_heads is None:
|
93 |
+
num_key_value_heads = num_attention_heads
|
94 |
+
|
95 |
+
self.num_key_value_heads = num_key_value_heads
|
96 |
+
|
97 |
+
super().__init__(
|
98 |
+
pad_token_id=pad_token_id,
|
99 |
+
bos_token_id=bos_token_id,
|
100 |
+
eos_token_id=eos_token_id,
|
101 |
+
tie_word_embeddings=tie_word_embeddings,
|
102 |
+
**kwargs,
|
103 |
+
)
|
104 |
+
|
105 |
+
def _rope_scaling_validation(self):
|
106 |
+
"""
|
107 |
+
Validate the `rope_scaling` configuration.
|
108 |
+
"""
|
109 |
+
if self.rope_scaling is None:
|
110 |
+
return
|
111 |
+
|
112 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
113 |
+
raise ValueError(
|
114 |
+
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
115 |
+
f"got {self.rope_scaling}"
|
116 |
+
)
|
117 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
118 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
119 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
120 |
+
raise ValueError(
|
121 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
122 |
+
)
|
123 |
+
if (
|
124 |
+
rope_scaling_factor is None
|
125 |
+
or not isinstance(rope_scaling_factor, float)
|
126 |
+
or rope_scaling_factor <= 1.0
|
127 |
+
):
|
128 |
+
raise ValueError(
|
129 |
+
f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}"
|
130 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.36.2"
|
7 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3b9d76d82f9f5d6f8d03da589fae79a95b12c03f43ef644f4b068c68913b70b
|
3 |
+
size 4998589368
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0e4e04523c8457023d7f10c4865dd3c0ab56a768b5f118ae82826c6c88e9e2f
|
3 |
+
size 4984439672
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f89bd5d2e817eaa4ff8eb6d4222189dbaaa1962173bb652f7d426a0e7b31c1d
|
3 |
+
size 3502447520
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_llama_moe_hf.py
ADDED
@@ -0,0 +1,1690 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch.distributions.normal import Normal
|
11 |
+
from transformers.modeling_outputs import (
|
12 |
+
CausalLMOutputWithPast,
|
13 |
+
)
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.utils import ModelOutput, logging
|
17 |
+
from transformers.cache_utils import Cache, DynamicCache
|
18 |
+
from transformers.modeling_attn_mask_utils import (
|
19 |
+
AttentionMaskConverter,
|
20 |
+
_prepare_4d_attention_mask,
|
21 |
+
_prepare_4d_causal_attention_mask,
|
22 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
23 |
+
)
|
24 |
+
from transformers.utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10
|
25 |
+
|
26 |
+
from .configuration_llama_moe import LlamaMoEConfig
|
27 |
+
|
28 |
+
|
29 |
+
if is_flash_attn_2_available():
|
30 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
31 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
32 |
+
|
33 |
+
|
34 |
+
def _get_unpad_data(attention_mask):
|
35 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
36 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
37 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
38 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
39 |
+
return (
|
40 |
+
indices,
|
41 |
+
cu_seqlens,
|
42 |
+
max_seqlen_in_batch,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
_CONFIG_FOR_DOC = "LlamaMoEConfig"
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class CalculatorOutput(ModelOutput):
|
53 |
+
hidden_states: Optional[torch.FloatTensor] = None
|
54 |
+
num_dropped_tokens: Optional[int] = None
|
55 |
+
|
56 |
+
|
57 |
+
@dataclass
|
58 |
+
class BaseMoEModelOutputWithPast(ModelOutput):
|
59 |
+
"""
|
60 |
+
Args:
|
61 |
+
num_dropped_tokens: layer idx to the number of dropped tokens
|
62 |
+
"""
|
63 |
+
|
64 |
+
last_hidden_state: torch.FloatTensor = None
|
65 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
66 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
67 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
68 |
+
balance_loss: Optional[float] = None
|
69 |
+
num_dropped_tokens: Optional[Tuple[torch.Tensor]] = None
|
70 |
+
gate_load: Optional[Tuple[list]] = None
|
71 |
+
gate_importance: Optional[Tuple[list]] = None
|
72 |
+
|
73 |
+
|
74 |
+
@dataclass
|
75 |
+
class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
|
76 |
+
balance_loss: Optional[float] = None
|
77 |
+
num_dropped_tokens: Optional[Tuple[int]] = None
|
78 |
+
gate_load: Optional[Tuple[list[torch.Tensor]]] = None
|
79 |
+
gate_importance: Optional[Tuple[list[torch.Tensor]]] = None
|
80 |
+
|
81 |
+
|
82 |
+
@dataclass
|
83 |
+
class MoEMlpOutput(ModelOutput):
|
84 |
+
hidden_states: Optional[torch.FloatTensor] = None
|
85 |
+
balance_loss: Optional[torch.FloatTensor] = None
|
86 |
+
num_dropped_tokens: Optional[int] = None
|
87 |
+
gate_load: Optional[list] = None
|
88 |
+
gate_importance: Optional[list] = None
|
89 |
+
|
90 |
+
|
91 |
+
def _make_causal_mask(
|
92 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
93 |
+
):
|
94 |
+
"""
|
95 |
+
Make causal mask used for bi-directional self-attention.
|
96 |
+
"""
|
97 |
+
bsz, tgt_len = input_ids_shape
|
98 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
99 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
100 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
101 |
+
mask = mask.to(dtype)
|
102 |
+
|
103 |
+
if past_key_values_length > 0:
|
104 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
105 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
109 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
110 |
+
"""
|
111 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
112 |
+
"""
|
113 |
+
bsz, src_len = mask.size()
|
114 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
115 |
+
|
116 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
117 |
+
|
118 |
+
inverted_mask = 1.0 - expanded_mask
|
119 |
+
|
120 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
121 |
+
|
122 |
+
|
123 |
+
class LlamaRMSNorm(nn.Module):
|
124 |
+
def __init__(self, hidden_size, eps=1e-6):
|
125 |
+
"""
|
126 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
127 |
+
"""
|
128 |
+
super().__init__()
|
129 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
130 |
+
self.variance_epsilon = eps
|
131 |
+
|
132 |
+
def forward(self, hidden_states):
|
133 |
+
input_dtype = hidden_states.dtype
|
134 |
+
hidden_states = hidden_states.to(torch.float32)
|
135 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
136 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
137 |
+
return self.weight * hidden_states.to(input_dtype)
|
138 |
+
|
139 |
+
|
140 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
141 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
142 |
+
super().__init__()
|
143 |
+
|
144 |
+
self.dim = dim
|
145 |
+
self.max_position_embeddings = max_position_embeddings
|
146 |
+
self.base = base
|
147 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
148 |
+
self.register_buffer("inv_freq", inv_freq)
|
149 |
+
|
150 |
+
# Build here to make `torch.jit.trace` work.
|
151 |
+
self._set_cos_sin_cache(
|
152 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
153 |
+
)
|
154 |
+
|
155 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
156 |
+
self.max_seq_len_cached = seq_len
|
157 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
158 |
+
|
159 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
160 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
161 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
162 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
163 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
164 |
+
|
165 |
+
def forward(self, x, seq_len=None):
|
166 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
167 |
+
if seq_len > self.max_seq_len_cached:
|
168 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
169 |
+
|
170 |
+
return (
|
171 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
172 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
177 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
178 |
+
|
179 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
180 |
+
self.scaling_factor = scaling_factor
|
181 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
182 |
+
|
183 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
184 |
+
self.max_seq_len_cached = seq_len
|
185 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
186 |
+
t = t / self.scaling_factor
|
187 |
+
|
188 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
189 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
190 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
191 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
192 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
193 |
+
|
194 |
+
|
195 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
196 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
197 |
+
|
198 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
199 |
+
self.scaling_factor = scaling_factor
|
200 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
201 |
+
|
202 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
203 |
+
self.max_seq_len_cached = seq_len
|
204 |
+
|
205 |
+
if seq_len > self.max_position_embeddings:
|
206 |
+
base = self.base * (
|
207 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
208 |
+
) ** (self.dim / (self.dim - 2))
|
209 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
210 |
+
self.register_buffer("inv_freq", inv_freq)
|
211 |
+
|
212 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
213 |
+
|
214 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
215 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
216 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
217 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
218 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
219 |
+
|
220 |
+
|
221 |
+
def rotate_half(x):
|
222 |
+
"""Rotates half the hidden dims of the input."""
|
223 |
+
x1 = x[..., : x.shape[-1] // 2]
|
224 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
225 |
+
return torch.cat((-x2, x1), dim=-1)
|
226 |
+
|
227 |
+
|
228 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
229 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
230 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
231 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
232 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
233 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
234 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
235 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
236 |
+
return q_embed, k_embed
|
237 |
+
|
238 |
+
|
239 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
240 |
+
"""
|
241 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
242 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
243 |
+
"""
|
244 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
245 |
+
if n_rep == 1:
|
246 |
+
return hidden_states
|
247 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
248 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
249 |
+
|
250 |
+
|
251 |
+
class LlamaAttention(nn.Module):
|
252 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
253 |
+
|
254 |
+
def __init__(self, config: LlamaMoEConfig, layer_idx: Optional[int] = None):
|
255 |
+
super().__init__()
|
256 |
+
self.config = config
|
257 |
+
self.layer_idx = layer_idx
|
258 |
+
if layer_idx is None:
|
259 |
+
logger.warning_once(
|
260 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
261 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
262 |
+
"when creating this class."
|
263 |
+
)
|
264 |
+
|
265 |
+
self.attention_dropout = config.attention_dropout
|
266 |
+
self.hidden_size = config.hidden_size
|
267 |
+
self.num_heads = config.num_attention_heads
|
268 |
+
self.head_dim = self.hidden_size // self.num_heads
|
269 |
+
self.num_key_value_heads = config.num_key_value_heads
|
270 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
271 |
+
self.max_position_embeddings = config.max_position_embeddings
|
272 |
+
self.rope_theta = config.rope_theta
|
273 |
+
self.is_causal = True
|
274 |
+
|
275 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
276 |
+
raise ValueError(
|
277 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
278 |
+
f" and `num_heads`: {self.num_heads})."
|
279 |
+
)
|
280 |
+
|
281 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
282 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
283 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
284 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
285 |
+
self._init_rope()
|
286 |
+
|
287 |
+
def _init_rope(self):
|
288 |
+
if self.config.rope_scaling is None:
|
289 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
290 |
+
self.head_dim,
|
291 |
+
max_position_embeddings=self.max_position_embeddings,
|
292 |
+
base=self.rope_theta,
|
293 |
+
)
|
294 |
+
else:
|
295 |
+
scaling_type = self.config.rope_scaling["type"]
|
296 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
297 |
+
if scaling_type == "linear":
|
298 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
299 |
+
self.head_dim,
|
300 |
+
max_position_embeddings=self.max_position_embeddings,
|
301 |
+
scaling_factor=scaling_factor,
|
302 |
+
base=self.rope_theta,
|
303 |
+
)
|
304 |
+
elif scaling_type == "dynamic":
|
305 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
306 |
+
self.head_dim,
|
307 |
+
max_position_embeddings=self.max_position_embeddings,
|
308 |
+
scaling_factor=scaling_factor,
|
309 |
+
base=self.rope_theta,
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
313 |
+
|
314 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
315 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
316 |
+
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
hidden_states: torch.Tensor,
|
320 |
+
attention_mask: Optional[torch.Tensor] = None,
|
321 |
+
position_ids: Optional[torch.LongTensor] = None,
|
322 |
+
past_key_value: Optional[Cache] = None,
|
323 |
+
output_attentions: bool = False,
|
324 |
+
use_cache: bool = False,
|
325 |
+
**kwargs,
|
326 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
327 |
+
if "padding_mask" in kwargs:
|
328 |
+
warnings.warn(
|
329 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
330 |
+
)
|
331 |
+
|
332 |
+
bsz, q_len, _ = hidden_states.size()
|
333 |
+
|
334 |
+
if self.config.pretraining_tp > 1:
|
335 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
336 |
+
query_slices = self.q_proj.weight.split(
|
337 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
338 |
+
)
|
339 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
340 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
341 |
+
|
342 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
343 |
+
query_states = torch.cat(query_states, dim=-1)
|
344 |
+
|
345 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
346 |
+
key_states = torch.cat(key_states, dim=-1)
|
347 |
+
|
348 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
349 |
+
value_states = torch.cat(value_states, dim=-1)
|
350 |
+
|
351 |
+
else:
|
352 |
+
query_states = self.q_proj(hidden_states)
|
353 |
+
key_states = self.k_proj(hidden_states)
|
354 |
+
value_states = self.v_proj(hidden_states)
|
355 |
+
|
356 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
357 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
358 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
359 |
+
|
360 |
+
kv_seq_len = key_states.shape[-2]
|
361 |
+
if past_key_value is not None:
|
362 |
+
if self.layer_idx is None:
|
363 |
+
raise ValueError(
|
364 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
365 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
366 |
+
"with a layer index."
|
367 |
+
)
|
368 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
369 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
370 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
371 |
+
|
372 |
+
if past_key_value is not None:
|
373 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
374 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
375 |
+
|
376 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
377 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
378 |
+
|
379 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
380 |
+
|
381 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
382 |
+
raise ValueError(
|
383 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
384 |
+
f" {attn_weights.size()}"
|
385 |
+
)
|
386 |
+
|
387 |
+
if attention_mask is not None:
|
388 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
389 |
+
raise ValueError(
|
390 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
391 |
+
)
|
392 |
+
attn_weights = attn_weights + attention_mask
|
393 |
+
|
394 |
+
# upcast attention to fp32
|
395 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
396 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
397 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
398 |
+
|
399 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
400 |
+
raise ValueError(
|
401 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
402 |
+
f" {attn_output.size()}"
|
403 |
+
)
|
404 |
+
|
405 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
406 |
+
|
407 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
408 |
+
|
409 |
+
if self.config.pretraining_tp > 1:
|
410 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
411 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
412 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
413 |
+
else:
|
414 |
+
attn_output = self.o_proj(attn_output)
|
415 |
+
|
416 |
+
if not output_attentions:
|
417 |
+
attn_weights = None
|
418 |
+
|
419 |
+
return attn_output, attn_weights, past_key_value
|
420 |
+
|
421 |
+
|
422 |
+
class LlamaFlashAttention2(LlamaAttention):
|
423 |
+
"""
|
424 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
425 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
426 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
427 |
+
"""
|
428 |
+
|
429 |
+
def __init__(self, *args, **kwargs):
|
430 |
+
super().__init__(*args, **kwargs)
|
431 |
+
|
432 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
433 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
434 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
435 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
436 |
+
|
437 |
+
def forward(
|
438 |
+
self,
|
439 |
+
hidden_states: torch.Tensor,
|
440 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
441 |
+
position_ids: Optional[torch.LongTensor] = None,
|
442 |
+
past_key_value: Optional[Cache] = None,
|
443 |
+
output_attentions: bool = False,
|
444 |
+
use_cache: bool = False,
|
445 |
+
**kwargs,
|
446 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
447 |
+
# LlamaFlashAttention2 attention does not support output_attentions
|
448 |
+
if "padding_mask" in kwargs:
|
449 |
+
warnings.warn(
|
450 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
451 |
+
)
|
452 |
+
|
453 |
+
# overwrite attention_mask with padding_mask
|
454 |
+
attention_mask = kwargs.pop("padding_mask")
|
455 |
+
|
456 |
+
output_attentions = False
|
457 |
+
|
458 |
+
bsz, q_len, _ = hidden_states.size()
|
459 |
+
|
460 |
+
query_states = self.q_proj(hidden_states)
|
461 |
+
key_states = self.k_proj(hidden_states)
|
462 |
+
value_states = self.v_proj(hidden_states)
|
463 |
+
|
464 |
+
# Flash attention requires the input to have the shape
|
465 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
466 |
+
# therefore we just need to keep the original shape
|
467 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
468 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
469 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
470 |
+
|
471 |
+
kv_seq_len = key_states.shape[-2]
|
472 |
+
if past_key_value is not None:
|
473 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
474 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
475 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
476 |
+
|
477 |
+
if past_key_value is not None:
|
478 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
479 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
480 |
+
|
481 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
482 |
+
# to be able to avoid many of these transpose/reshape/view.
|
483 |
+
query_states = query_states.transpose(1, 2)
|
484 |
+
key_states = key_states.transpose(1, 2)
|
485 |
+
value_states = value_states.transpose(1, 2)
|
486 |
+
|
487 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
488 |
+
|
489 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
490 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
491 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
492 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
493 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
494 |
+
|
495 |
+
input_dtype = query_states.dtype
|
496 |
+
if input_dtype == torch.float32:
|
497 |
+
if torch.is_autocast_enabled():
|
498 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
499 |
+
# Handle the case where the model is quantized
|
500 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
501 |
+
target_dtype = self.config._pre_quantization_dtype
|
502 |
+
else:
|
503 |
+
target_dtype = self.q_proj.weight.dtype
|
504 |
+
|
505 |
+
logger.warning_once(
|
506 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
507 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
508 |
+
f" {target_dtype}."
|
509 |
+
)
|
510 |
+
|
511 |
+
query_states = query_states.to(target_dtype)
|
512 |
+
key_states = key_states.to(target_dtype)
|
513 |
+
value_states = value_states.to(target_dtype)
|
514 |
+
|
515 |
+
attn_output = self._flash_attention_forward(
|
516 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
517 |
+
)
|
518 |
+
|
519 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
520 |
+
attn_output = self.o_proj(attn_output)
|
521 |
+
|
522 |
+
if not output_attentions:
|
523 |
+
attn_weights = None
|
524 |
+
|
525 |
+
return attn_output, attn_weights, past_key_value
|
526 |
+
|
527 |
+
def _flash_attention_forward(
|
528 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
529 |
+
):
|
530 |
+
"""
|
531 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
532 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
533 |
+
|
534 |
+
Args:
|
535 |
+
query_states (`torch.Tensor`):
|
536 |
+
Input query states to be passed to Flash Attention API
|
537 |
+
key_states (`torch.Tensor`):
|
538 |
+
Input key states to be passed to Flash Attention API
|
539 |
+
value_states (`torch.Tensor`):
|
540 |
+
Input value states to be passed to Flash Attention API
|
541 |
+
attention_mask (`torch.Tensor`):
|
542 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
543 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
544 |
+
dropout (`int`, *optional*):
|
545 |
+
Attention dropout
|
546 |
+
softmax_scale (`float`, *optional*):
|
547 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
548 |
+
"""
|
549 |
+
if not self._flash_attn_uses_top_left_mask:
|
550 |
+
causal = self.is_causal
|
551 |
+
else:
|
552 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
553 |
+
causal = self.is_causal and query_length != 1
|
554 |
+
|
555 |
+
# Contains at least one padding token in the sequence
|
556 |
+
if attention_mask is not None:
|
557 |
+
batch_size = query_states.shape[0]
|
558 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
559 |
+
query_states, key_states, value_states, attention_mask, query_length
|
560 |
+
)
|
561 |
+
|
562 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
563 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
564 |
+
|
565 |
+
attn_output_unpad = flash_attn_varlen_func(
|
566 |
+
query_states,
|
567 |
+
key_states,
|
568 |
+
value_states,
|
569 |
+
cu_seqlens_q=cu_seqlens_q,
|
570 |
+
cu_seqlens_k=cu_seqlens_k,
|
571 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
572 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
573 |
+
dropout_p=dropout,
|
574 |
+
softmax_scale=softmax_scale,
|
575 |
+
causal=causal,
|
576 |
+
)
|
577 |
+
|
578 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
579 |
+
else:
|
580 |
+
attn_output = flash_attn_func(
|
581 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
582 |
+
)
|
583 |
+
|
584 |
+
return attn_output
|
585 |
+
|
586 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
587 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
588 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
589 |
+
|
590 |
+
key_layer = index_first_axis(
|
591 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
592 |
+
)
|
593 |
+
value_layer = index_first_axis(
|
594 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
595 |
+
)
|
596 |
+
if query_length == kv_seq_len:
|
597 |
+
query_layer = index_first_axis(
|
598 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
599 |
+
)
|
600 |
+
cu_seqlens_q = cu_seqlens_k
|
601 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
602 |
+
indices_q = indices_k
|
603 |
+
elif query_length == 1:
|
604 |
+
max_seqlen_in_batch_q = 1
|
605 |
+
cu_seqlens_q = torch.arange(
|
606 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
607 |
+
) # There is a memcpy here, that is very bad.
|
608 |
+
indices_q = cu_seqlens_q[:-1]
|
609 |
+
query_layer = query_layer.squeeze(1)
|
610 |
+
else:
|
611 |
+
# The -q_len: slice assumes left padding.
|
612 |
+
attention_mask = attention_mask[:, -query_length:]
|
613 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
614 |
+
|
615 |
+
return (
|
616 |
+
query_layer,
|
617 |
+
key_layer,
|
618 |
+
value_layer,
|
619 |
+
indices_q,
|
620 |
+
(cu_seqlens_q, cu_seqlens_k),
|
621 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
622 |
+
)
|
623 |
+
|
624 |
+
|
625 |
+
class LlamaSdpaAttention(LlamaAttention):
|
626 |
+
"""
|
627 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
628 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
629 |
+
SDPA API.
|
630 |
+
"""
|
631 |
+
|
632 |
+
# Adapted from LlamaAttention.forward
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
hidden_states: torch.Tensor,
|
636 |
+
attention_mask: Optional[torch.Tensor] = None,
|
637 |
+
position_ids: Optional[torch.LongTensor] = None,
|
638 |
+
past_key_value: Optional[Cache] = None,
|
639 |
+
output_attentions: bool = False,
|
640 |
+
use_cache: bool = False,
|
641 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
642 |
+
if output_attentions:
|
643 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
644 |
+
logger.warning_once(
|
645 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
646 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
647 |
+
)
|
648 |
+
return super().forward(
|
649 |
+
hidden_states=hidden_states,
|
650 |
+
attention_mask=attention_mask,
|
651 |
+
position_ids=position_ids,
|
652 |
+
past_key_value=past_key_value,
|
653 |
+
output_attentions=output_attentions,
|
654 |
+
use_cache=use_cache,
|
655 |
+
)
|
656 |
+
|
657 |
+
bsz, q_len, _ = hidden_states.size()
|
658 |
+
|
659 |
+
query_states = self.q_proj(hidden_states)
|
660 |
+
key_states = self.k_proj(hidden_states)
|
661 |
+
value_states = self.v_proj(hidden_states)
|
662 |
+
|
663 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
664 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
665 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
666 |
+
|
667 |
+
kv_seq_len = key_states.shape[-2]
|
668 |
+
if past_key_value is not None:
|
669 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
670 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
671 |
+
|
672 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
673 |
+
|
674 |
+
if past_key_value is not None:
|
675 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
676 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
677 |
+
|
678 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
679 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
680 |
+
|
681 |
+
if attention_mask is not None:
|
682 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
683 |
+
raise ValueError(
|
684 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
685 |
+
)
|
686 |
+
|
687 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
688 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
689 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
690 |
+
query_states = query_states.contiguous()
|
691 |
+
key_states = key_states.contiguous()
|
692 |
+
value_states = value_states.contiguous()
|
693 |
+
|
694 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
695 |
+
query_states,
|
696 |
+
key_states,
|
697 |
+
value_states,
|
698 |
+
attn_mask=attention_mask,
|
699 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
700 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
701 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
702 |
+
)
|
703 |
+
|
704 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
705 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
706 |
+
|
707 |
+
attn_output = self.o_proj(attn_output)
|
708 |
+
|
709 |
+
return attn_output, None, past_key_value
|
710 |
+
|
711 |
+
|
712 |
+
LLAMA_ATTENTION_CLASSES = {
|
713 |
+
"eager": LlamaAttention,
|
714 |
+
"flash_attention_2": LlamaFlashAttention2,
|
715 |
+
"sdpa": LlamaSdpaAttention,
|
716 |
+
}
|
717 |
+
|
718 |
+
|
719 |
+
class TopKBalancedNoisyGate(nn.Module):
|
720 |
+
def __init__(
|
721 |
+
self,
|
722 |
+
input_size,
|
723 |
+
num_experts,
|
724 |
+
num_selects,
|
725 |
+
gate_network="mlp",
|
726 |
+
use_softmax=True,
|
727 |
+
use_balance=True,
|
728 |
+
balance_loss_weight=1e-2,
|
729 |
+
add_noise=True,
|
730 |
+
noise_epsilon=1e-2,
|
731 |
+
):
|
732 |
+
super(TopKBalancedNoisyGate, self).__init__()
|
733 |
+
assert num_selects <= num_experts
|
734 |
+
self.input_size = input_size
|
735 |
+
self.num_experts = num_experts
|
736 |
+
self.num_selects = num_selects
|
737 |
+
|
738 |
+
self.gate_network_type = gate_network
|
739 |
+
self.gate_network = self.get_gate_network(gate_network, input_size, num_experts)
|
740 |
+
|
741 |
+
self.use_softmax = use_softmax
|
742 |
+
self.softmax = nn.Softmax(1)
|
743 |
+
|
744 |
+
self.use_balance = use_balance
|
745 |
+
self.balance_loss_weight = balance_loss_weight
|
746 |
+
|
747 |
+
# add_noise
|
748 |
+
self.add_noise = add_noise
|
749 |
+
self.noise_epsilon = noise_epsilon
|
750 |
+
self.warned = False
|
751 |
+
if self.add_noise:
|
752 |
+
self.weight_noise = nn.Linear(input_size, num_experts, bias=False)
|
753 |
+
self.weight_noise.weight.data = torch.zeros(
|
754 |
+
(num_experts, input_size),
|
755 |
+
requires_grad=True,
|
756 |
+
device=self.weight_noise.weight.data.device,
|
757 |
+
dtype=self.weight_noise.weight.data.dtype,
|
758 |
+
)
|
759 |
+
self.mean = 0.0
|
760 |
+
self.std = 1.0
|
761 |
+
self.normal = Normal(self.mean, self.std)
|
762 |
+
self.softplus = nn.Softplus()
|
763 |
+
|
764 |
+
self.reset_parameters()
|
765 |
+
|
766 |
+
def get_gate_network(self, gate_type, input_size, num_experts):
|
767 |
+
gate_type = gate_type.lower()
|
768 |
+
|
769 |
+
if gate_type == "linear":
|
770 |
+
gate_network = nn.Linear(input_size, num_experts, bias=False)
|
771 |
+
nn.init.zeros_(gate_network.weight)
|
772 |
+
elif gate_type == "mlp":
|
773 |
+
gate_network = torch.nn.Sequential(
|
774 |
+
torch.nn.Linear(input_size, num_experts, bias=False),
|
775 |
+
torch.nn.Tanh(),
|
776 |
+
torch.nn.Linear(num_experts, num_experts, bias=False),
|
777 |
+
)
|
778 |
+
else:
|
779 |
+
raise ValueError(f'Unexpected gate_type: {gate_type}.')
|
780 |
+
|
781 |
+
return gate_network
|
782 |
+
|
783 |
+
def reset_gate_network(self):
|
784 |
+
if "gate_network_type" not in vars(self):
|
785 |
+
raise KeyError(f"{type(self)} does not have a gate network.")
|
786 |
+
else:
|
787 |
+
self.gate_network = self.get_gate_network(
|
788 |
+
self.gate_network_type, self.input_size, self.num_experts
|
789 |
+
)
|
790 |
+
|
791 |
+
def reset_parameters(self):
|
792 |
+
if self.add_noise:
|
793 |
+
nn.init.zeros_(self.weight_noise.weight)
|
794 |
+
# nn.init.zeros_(self.weight_noise)
|
795 |
+
|
796 |
+
def cv_squared(self, x, eps=1e-10):
|
797 |
+
"""The squared coefficient of variation of a sample.
|
798 |
+
Useful as a loss to encourage a positive distribution to be more uniform.
|
799 |
+
Epsilons added for numerical stability.
|
800 |
+
Returns 0 for an empty Tensor.
|
801 |
+
Args:
|
802 |
+
x: a `Tensor`.
|
803 |
+
Returns:
|
804 |
+
a `Scalar`.s
|
805 |
+
"""
|
806 |
+
if x.shape[0] == 1:
|
807 |
+
return torch.tensor(0.0, device=x.device)
|
808 |
+
return x.float().var() / (x.float().mean() ** 2 + eps)
|
809 |
+
|
810 |
+
def forward(self, x):
|
811 |
+
logits_gate = self.gate_network(x)
|
812 |
+
if self.training and self.add_noise:
|
813 |
+
noise_mm = self.weight_noise(x)
|
814 |
+
noise_control = self.softplus(noise_mm) + self.noise_epsilon
|
815 |
+
logits_noise = torch.randn_like(logits_gate) * noise_control
|
816 |
+
logits = logits_gate + logits_noise
|
817 |
+
else:
|
818 |
+
logits = logits_gate
|
819 |
+
|
820 |
+
top_logits, top_indices = logits.topk(min(self.num_selects + 1, self.num_experts), dim=1) # 选择并排序前k+1个权重
|
821 |
+
top_k_logits = top_logits[:, :self.num_selects]
|
822 |
+
top_k_indices = top_indices[:, :self.num_selects]
|
823 |
+
top_k_scores = self.softmax(top_k_logits.to(torch.float32)) if self.use_softmax else top_k_logits
|
824 |
+
top_k_scores = top_k_scores.to(logits.dtype)
|
825 |
+
|
826 |
+
zeros = torch.zeros_like(logits, requires_grad=True, device=logits.device)
|
827 |
+
scores_filtered = zeros.scatter(dim=1, index=top_k_indices, src=top_k_scores) # shape(batch_size, num_experts)
|
828 |
+
importance = scores_filtered.sum(0) # shape(num_experts)
|
829 |
+
|
830 |
+
if self.training:
|
831 |
+
if self.add_noise and self.num_selects != self.num_experts:
|
832 |
+
batch_size = top_logits.size(0)
|
833 |
+
m = top_logits.size(1)
|
834 |
+
top_values_flat = top_logits.flatten()
|
835 |
+
threshold_positions_if_in = torch.arange(batch_size, device=x.device) * m + self.num_selects
|
836 |
+
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
|
837 |
+
is_in = torch.gt(logits_noise, threshold_if_in)
|
838 |
+
threshold_positions_if_out = threshold_positions_if_in - 1
|
839 |
+
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
|
840 |
+
# is each value currently in the top k.
|
841 |
+
prob_if_in = self.normal.cdf((logits_gate - threshold_if_in) / noise_control)
|
842 |
+
prob_if_out = self.normal.cdf((logits_gate - threshold_if_out) / noise_control)
|
843 |
+
prob = torch.where(is_in, prob_if_in, prob_if_out)
|
844 |
+
load = prob.sum(0)
|
845 |
+
else:
|
846 |
+
load = (scores_filtered > 0).sum(0)
|
847 |
+
if not self.add_noise and not self.warned:
|
848 |
+
warnings.warn('Gradient-trackable implementation for load calculation is only available when "add_noise=True". '
|
849 |
+
'Training without noise will block the gradient from "load" path and lead to inconsistency in optimization objectives.')
|
850 |
+
self.warned = True
|
851 |
+
else:
|
852 |
+
load = (scores_filtered > 0).sum(0)
|
853 |
+
|
854 |
+
if self.use_balance:
|
855 |
+
balance_loss = self.cv_squared(importance) + self.cv_squared(load)
|
856 |
+
balance_loss *= self.balance_loss_weight
|
857 |
+
else:
|
858 |
+
balance_loss = torch.tensor(-100.0, device=x.device)
|
859 |
+
|
860 |
+
return {
|
861 |
+
"topK_indices": top_k_indices,
|
862 |
+
"topK_scores": top_k_scores,
|
863 |
+
"balance_loss": balance_loss,
|
864 |
+
"load": load,
|
865 |
+
"importance": importance,
|
866 |
+
}
|
867 |
+
|
868 |
+
|
869 |
+
class LinearGLUExperts(nn.Module):
|
870 |
+
"""
|
871 |
+
Modified from transformers.models.llama.modeling_llama.LlamaMLP
|
872 |
+
"""
|
873 |
+
|
874 |
+
__constants__ = [
|
875 |
+
"bias",
|
876 |
+
"in_features",
|
877 |
+
"hidden_features",
|
878 |
+
"out_features",
|
879 |
+
"hidden_act",
|
880 |
+
"num_experts",
|
881 |
+
"size_experts",
|
882 |
+
]
|
883 |
+
|
884 |
+
def __init__(
|
885 |
+
self,
|
886 |
+
in_features,
|
887 |
+
hidden_features,
|
888 |
+
out_features,
|
889 |
+
hidden_act,
|
890 |
+
num_experts,
|
891 |
+
size_experts=None,
|
892 |
+
bias=True,
|
893 |
+
device=None,
|
894 |
+
dtype=None,
|
895 |
+
):
|
896 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
897 |
+
super(LinearGLUExperts, self).__init__()
|
898 |
+
self.in_features = in_features
|
899 |
+
self.hidden_features = hidden_features
|
900 |
+
self.out_features = out_features
|
901 |
+
self.hidden_act = hidden_act
|
902 |
+
self.num_experts = num_experts
|
903 |
+
|
904 |
+
if size_experts is None:
|
905 |
+
# all experts share the same number of hidden neurons
|
906 |
+
assert hidden_features % num_experts == 0
|
907 |
+
size_per_expert = hidden_features // num_experts
|
908 |
+
size_experts = [size_per_expert for _ in range(num_experts)]
|
909 |
+
else:
|
910 |
+
# use specified expert sizes
|
911 |
+
assert (
|
912 |
+
len(size_experts) == num_experts
|
913 |
+
and sum(size_experts) == hidden_features
|
914 |
+
)
|
915 |
+
self.size_experts = size_experts
|
916 |
+
|
917 |
+
self.act_fn = ACT2FN[hidden_act]
|
918 |
+
|
919 |
+
self.weight_gate = nn.ParameterList()
|
920 |
+
self.weight_up = nn.ParameterList()
|
921 |
+
self.weight_down = nn.ParameterList()
|
922 |
+
|
923 |
+
for i in range(num_experts):
|
924 |
+
# this matrix will be transposed when performing linear forwarding
|
925 |
+
this_expert_weight_gate = nn.Parameter(
|
926 |
+
torch.empty((size_experts[i], in_features), **factory_kwargs)
|
927 |
+
)
|
928 |
+
# this matrix will be transposed when performing linear forwarding
|
929 |
+
this_expert_weight_up = nn.Parameter(
|
930 |
+
torch.empty((size_experts[i], in_features), **factory_kwargs)
|
931 |
+
)
|
932 |
+
# this matrix will be transposed when performing linear forwarding
|
933 |
+
this_expert_weight_down = nn.Parameter(
|
934 |
+
torch.empty((out_features, size_experts[i]), **factory_kwargs)
|
935 |
+
)
|
936 |
+
self.weight_gate.append(this_expert_weight_gate)
|
937 |
+
self.weight_up.append(this_expert_weight_up)
|
938 |
+
self.weight_down.append(this_expert_weight_down)
|
939 |
+
|
940 |
+
if bias:
|
941 |
+
self.bias_gate = nn.ParameterList()
|
942 |
+
self.bias_up = nn.ParameterList()
|
943 |
+
self.bias_down = nn.ParameterList()
|
944 |
+
|
945 |
+
for i in range(num_experts):
|
946 |
+
this_expert_bias_gate = nn.Parameter(
|
947 |
+
torch.empty((size_experts[i],), **factory_kwargs)
|
948 |
+
)
|
949 |
+
this_expert_bias_up = nn.Parameter(
|
950 |
+
torch.empty((size_experts[i],), **factory_kwargs)
|
951 |
+
)
|
952 |
+
this_expert_bias_down = nn.Parameter(
|
953 |
+
torch.empty((out_features,), **factory_kwargs)
|
954 |
+
)
|
955 |
+
self.bias_gate.append(this_expert_bias_gate)
|
956 |
+
self.bias_up.append(this_expert_bias_up)
|
957 |
+
self.bias_down.append(this_expert_bias_down)
|
958 |
+
else:
|
959 |
+
self.register_parameter("bias_gate", None)
|
960 |
+
self.register_parameter("bias_up", None)
|
961 |
+
self.register_parameter("bias_down", None)
|
962 |
+
|
963 |
+
self.reset_parameters()
|
964 |
+
|
965 |
+
def reset_parameters(self):
|
966 |
+
for i in range(self.num_experts):
|
967 |
+
nn.init.kaiming_uniform_(self.weight_gate[i], a=math.sqrt(5))
|
968 |
+
nn.init.kaiming_uniform_(self.weight_up[i], a=math.sqrt(5))
|
969 |
+
nn.init.kaiming_uniform_(self.weight_down[i], a=math.sqrt(5))
|
970 |
+
if self.bias_gate is not None:
|
971 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_gate[i])
|
972 |
+
bound = 1 / math.sqrt(fan_in)
|
973 |
+
nn.init.uniform_(self.bias_gate[i], -bound, bound)
|
974 |
+
if self.bias_up is not None:
|
975 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_up[i])
|
976 |
+
bound = 1 / math.sqrt(fan_in)
|
977 |
+
nn.init.uniform_(self.bias_up[i], -bound, bound)
|
978 |
+
if self.bias_down is not None:
|
979 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_down[i])
|
980 |
+
bound = 1 / math.sqrt(fan_in)
|
981 |
+
nn.init.uniform_(self.bias_down[i], -bound, bound)
|
982 |
+
|
983 |
+
def forward(self, input, i):
|
984 |
+
gate = self.act_fn(
|
985 |
+
F.linear(
|
986 |
+
input,
|
987 |
+
self.weight_gate[i],
|
988 |
+
self.bias_gate[i] if self.bias_gate is not None else None,
|
989 |
+
)
|
990 |
+
)
|
991 |
+
up = F.linear(
|
992 |
+
input,
|
993 |
+
self.weight_up[i],
|
994 |
+
self.bias_up[i] if self.bias_up is not None else None,
|
995 |
+
)
|
996 |
+
down = F.linear(
|
997 |
+
gate * up,
|
998 |
+
self.weight_down[i],
|
999 |
+
self.bias_down[i] if self.bias_down is not None else None,
|
1000 |
+
)
|
1001 |
+
return down
|
1002 |
+
|
1003 |
+
def extra_repr(self):
|
1004 |
+
return (
|
1005 |
+
"in_features={}, hidden_features={}, out_features={}, hidden_act={},"
|
1006 |
+
" num_experts={}, size_experts={}, bias={}".format(
|
1007 |
+
self.in_features,
|
1008 |
+
self.hidden_features,
|
1009 |
+
self.out_features,
|
1010 |
+
self.hidden_act,
|
1011 |
+
self.num_experts,
|
1012 |
+
self.size_experts,
|
1013 |
+
self.bias_gate is not None,
|
1014 |
+
)
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
|
1018 |
+
class UniversalCalculator(nn.Module):
|
1019 |
+
def __init__(
|
1020 |
+
self,
|
1021 |
+
experts: LinearGLUExperts,
|
1022 |
+
multiply_gate_scores=True,
|
1023 |
+
score_scale_factor=1.0,
|
1024 |
+
add_weight_norm: bool = False,
|
1025 |
+
):
|
1026 |
+
super(UniversalCalculator, self).__init__()
|
1027 |
+
self.experts = experts
|
1028 |
+
# TODO (zhutong): use vmap to boost the training efficiency
|
1029 |
+
# self.experts_vmap = torch.vmap(self.experts)
|
1030 |
+
self.multiply_gate_scores = multiply_gate_scores
|
1031 |
+
self.score_scale_factor = score_scale_factor
|
1032 |
+
self.num_experts = experts.num_experts
|
1033 |
+
self.mlp_norm = None
|
1034 |
+
if multiply_gate_scores and add_weight_norm:
|
1035 |
+
raise NotImplementedError
|
1036 |
+
|
1037 |
+
def reset_experts(self):
|
1038 |
+
self.experts.reset_parameters()
|
1039 |
+
|
1040 |
+
def forward(
|
1041 |
+
self, x, topK_indices, topK_scores, expert_batch_size=None, **kwargs
|
1042 |
+
) -> CalculatorOutput:
|
1043 |
+
batch_size = topK_indices.size(0) # topK_indices: (bsz*seq_len, num_selects)
|
1044 |
+
num_selects = topK_indices.size(1)
|
1045 |
+
topK_indices = topK_indices.flatten() # shape(batch_size*num_selects)
|
1046 |
+
topK_scores = topK_scores.flatten() # shape(batch_size*num_selects)
|
1047 |
+
batch_indices = torch.arange(
|
1048 |
+
batch_size, device=topK_scores.device
|
1049 |
+
).repeat_interleave(num_selects)
|
1050 |
+
|
1051 |
+
_, index_sorted_topK_indices = topK_indices.sort(0)
|
1052 |
+
|
1053 |
+
sorted_topK_scores = topK_scores.index_select(0, index_sorted_topK_indices)
|
1054 |
+
sorted_batch_indices = batch_indices.index_select(0, index_sorted_topK_indices)
|
1055 |
+
|
1056 |
+
if expert_batch_size is None:
|
1057 |
+
expert_batch_size = topK_indices.bincount(
|
1058 |
+
minlength=self.num_experts
|
1059 |
+
).tolist()
|
1060 |
+
|
1061 |
+
sorted_x = x.index_select(0, sorted_batch_indices)
|
1062 |
+
split_x = torch.split(sorted_x, expert_batch_size, dim=0)
|
1063 |
+
|
1064 |
+
expert_outputs = [
|
1065 |
+
self.experts(split_x[i], i)
|
1066 |
+
for i in range(self.num_experts)
|
1067 |
+
if split_x[i].shape[0] > 0
|
1068 |
+
]
|
1069 |
+
|
1070 |
+
# (bsz*seq_len*num_selects, hidden_size)
|
1071 |
+
cat_expert_outputs = torch.cat(expert_outputs, 0)
|
1072 |
+
output_dim = cat_expert_outputs.size(1)
|
1073 |
+
if self.multiply_gate_scores:
|
1074 |
+
if self.mlp_norm is None:
|
1075 |
+
cat_expert_outputs = torch.mul(
|
1076 |
+
cat_expert_outputs,
|
1077 |
+
sorted_topK_scores.reshape(-1, 1) * self.score_scale_factor,
|
1078 |
+
)
|
1079 |
+
# cat_expert_outputs = torch.mul(cat_expert_outputs, sorted_topK_scores.reshape(-1, 1) * 1.0)
|
1080 |
+
else:
|
1081 |
+
cat_expert_outputs = torch.mul(
|
1082 |
+
cat_expert_outputs, sorted_topK_scores.reshape(-1, 1)
|
1083 |
+
)
|
1084 |
+
cat_expert_outputs = self.mlp_norm(cat_expert_outputs)
|
1085 |
+
|
1086 |
+
zeros = torch.zeros(
|
1087 |
+
(batch_size, output_dim),
|
1088 |
+
device=cat_expert_outputs.device,
|
1089 |
+
dtype=cat_expert_outputs.dtype,
|
1090 |
+
)
|
1091 |
+
y = zeros.index_add(0, sorted_batch_indices, cat_expert_outputs)
|
1092 |
+
|
1093 |
+
return CalculatorOutput(hidden_states=y, num_dropped_tokens=torch.tensor(-1.0))
|
1094 |
+
|
1095 |
+
|
1096 |
+
class BaseMoELayer(nn.Module):
|
1097 |
+
def __init__(self):
|
1098 |
+
super(BaseMoELayer, self).__init__()
|
1099 |
+
|
1100 |
+
self.gate: TopKBalancedNoisyGate
|
1101 |
+
self.calculator: UniversalCalculator
|
1102 |
+
|
1103 |
+
def _create_gate(self, **kwargs):
|
1104 |
+
self.gate_type = kwargs.get("gate_type", "TopKBalancedNoisyGate")
|
1105 |
+
|
1106 |
+
if self.gate_type == "TopKBalancedNoisyGate": # noisy gate
|
1107 |
+
self.gate = TopKBalancedNoisyGate(
|
1108 |
+
self.input_size,
|
1109 |
+
self.num_experts,
|
1110 |
+
self.num_selects,
|
1111 |
+
gate_network=kwargs.get("gate_network", "mlp"),
|
1112 |
+
use_softmax=kwargs.get("gate_use_softmax", True),
|
1113 |
+
use_balance=kwargs.get("gate_use_balance", True),
|
1114 |
+
balance_loss_weight=kwargs.get("gate_balance_loss_weight", 1e-2),
|
1115 |
+
add_noise=kwargs.get("gate_add_noise", True),
|
1116 |
+
noise_epsilon=kwargs.get("gate_noise_epsilon", 1e-2),
|
1117 |
+
)
|
1118 |
+
else:
|
1119 |
+
raise NotImplementedError
|
1120 |
+
|
1121 |
+
def _create_calculator(self, experts, **kwargs):
|
1122 |
+
self.calculator_type = kwargs.get("calculator_type", "UniversalCalculator")
|
1123 |
+
|
1124 |
+
if self.calculator_type == "UniversalCalculator": # top K calculator
|
1125 |
+
self.calculator = UniversalCalculator(
|
1126 |
+
experts,
|
1127 |
+
multiply_gate_scores=kwargs.get("multiply_gate_scores", True),
|
1128 |
+
score_scale_factor=kwargs.get("score_scale_factor", 1.0),
|
1129 |
+
add_weight_norm=kwargs.get("add_weight_norm", False),
|
1130 |
+
)
|
1131 |
+
else:
|
1132 |
+
raise NotImplementedError
|
1133 |
+
|
1134 |
+
def forward(self, x, attention_mask=None) -> MoEMlpOutput:
|
1135 |
+
original_shape = x.shape[:-1]
|
1136 |
+
x = x.reshape(-1, self.input_size)
|
1137 |
+
flattened_mask = None
|
1138 |
+
if attention_mask is not None and len(attention_mask.shape) == 2:
|
1139 |
+
flattened_mask = attention_mask.flatten()
|
1140 |
+
flattened_shape = flattened_mask.shape
|
1141 |
+
x = x[flattened_mask.bool()]
|
1142 |
+
|
1143 |
+
gate_outputs: dict = self.gate(x)
|
1144 |
+
calc_outs: CalculatorOutput = self.calculator(x, **gate_outputs)
|
1145 |
+
|
1146 |
+
y = calc_outs.hidden_states
|
1147 |
+
if flattened_mask is not None:
|
1148 |
+
y = torch.zeros(flattened_shape + (self.output_size,), dtype=x.dtype, device=x.device) # (batch_size*seq_len, output_size)
|
1149 |
+
y[flattened_mask.bool()] = calc_outs.hidden_states # (non_padding_num, output_size)
|
1150 |
+
y = y.reshape(original_shape + (self.output_size,))
|
1151 |
+
|
1152 |
+
return MoEMlpOutput(
|
1153 |
+
hidden_states=y,
|
1154 |
+
balance_loss=gate_outputs.get("balance_loss"),
|
1155 |
+
num_dropped_tokens=calc_outs.num_dropped_tokens,
|
1156 |
+
gate_load=gate_outputs.get("load", torch.tensor(-1)),
|
1157 |
+
gate_importance=gate_outputs.get("importance", torch.tensor(-1)),
|
1158 |
+
)
|
1159 |
+
|
1160 |
+
def reset_gate_network(self):
|
1161 |
+
self.gate.reset_gate_network()
|
1162 |
+
|
1163 |
+
def reset_experts(self):
|
1164 |
+
self.calculator.reset_experts()
|
1165 |
+
|
1166 |
+
|
1167 |
+
class LinearGLUMoELayer(BaseMoELayer):
|
1168 |
+
def __init__(
|
1169 |
+
self,
|
1170 |
+
input_size,
|
1171 |
+
hidden_size,
|
1172 |
+
output_size,
|
1173 |
+
hidden_act,
|
1174 |
+
num_experts,
|
1175 |
+
num_selects,
|
1176 |
+
size_experts=None,
|
1177 |
+
bias=True,
|
1178 |
+
**kwargs,
|
1179 |
+
):
|
1180 |
+
super(LinearGLUMoELayer, self).__init__()
|
1181 |
+
assert num_selects <= num_experts
|
1182 |
+
self.input_size = input_size
|
1183 |
+
self.hidden_size = hidden_size
|
1184 |
+
self.output_size = output_size
|
1185 |
+
self.hidden_act = hidden_act
|
1186 |
+
self.num_experts = num_experts
|
1187 |
+
self.num_selects = num_selects
|
1188 |
+
self.size_experts = size_experts
|
1189 |
+
self.bias = bias
|
1190 |
+
|
1191 |
+
experts = LinearGLUExperts(
|
1192 |
+
input_size,
|
1193 |
+
hidden_size,
|
1194 |
+
output_size,
|
1195 |
+
hidden_act,
|
1196 |
+
num_experts,
|
1197 |
+
size_experts=size_experts,
|
1198 |
+
bias=bias,
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
self._create_gate(**kwargs)
|
1202 |
+
self._create_calculator(experts, **kwargs)
|
1203 |
+
|
1204 |
+
|
1205 |
+
class LlamaMoEDecoderLayer(nn.Module):
|
1206 |
+
def __init__(self, config: LlamaMoEConfig, layer_index):
|
1207 |
+
super().__init__()
|
1208 |
+
|
1209 |
+
self.hidden_size = config.hidden_size
|
1210 |
+
# self.self_attn = LlamaAttention(config=config)
|
1211 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_index)
|
1212 |
+
|
1213 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1214 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1215 |
+
|
1216 |
+
gating_config = {
|
1217 |
+
# all gates
|
1218 |
+
"gate_type": config.gate_type,
|
1219 |
+
"gate_network": config.gate_network,
|
1220 |
+
"gate_use_softmax": config.gate_use_softmax,
|
1221 |
+
"gate_use_balance": config.gate_use_balance,
|
1222 |
+
"gate_balance_loss_weight": config.gate_balance_loss_weight,
|
1223 |
+
"gate_add_noise": config.gate_add_noise,
|
1224 |
+
# TopKBalancedNoisyGate
|
1225 |
+
"gate_noise_epsilon": config.gate_noise_epsilon,
|
1226 |
+
}
|
1227 |
+
calculator_config = {
|
1228 |
+
# all calculators
|
1229 |
+
"calculator_type": config.calculator_type,
|
1230 |
+
"multiply_gate_scores": config.multiply_gate_scores,
|
1231 |
+
"score_scale_factor": (
|
1232 |
+
config.score_scale_factor[layer_index]
|
1233 |
+
if isinstance(config.score_scale_factor, list)
|
1234 |
+
else config.score_scale_factor
|
1235 |
+
),
|
1236 |
+
"add_weight_norm": config.add_weight_norm,
|
1237 |
+
# SwitchDropTokenCalculator
|
1238 |
+
"drop_tokens": config.drop_tokens,
|
1239 |
+
"dropped_padding": config.dropped_padding,
|
1240 |
+
"capacity_factor": config.capacity_factor,
|
1241 |
+
}
|
1242 |
+
|
1243 |
+
self.mlp = LinearGLUMoELayer(
|
1244 |
+
input_size=self.hidden_size,
|
1245 |
+
hidden_size=config.intermediate_size,
|
1246 |
+
output_size=self.hidden_size,
|
1247 |
+
hidden_act=config.hidden_act,
|
1248 |
+
num_experts=config.num_experts,
|
1249 |
+
num_selects=config.num_selects,
|
1250 |
+
size_experts=(
|
1251 |
+
config.size_experts[layer_index]
|
1252 |
+
if config.size_experts is not None
|
1253 |
+
else None
|
1254 |
+
),
|
1255 |
+
bias=False,
|
1256 |
+
**gating_config,
|
1257 |
+
**calculator_config,
|
1258 |
+
)
|
1259 |
+
|
1260 |
+
def forward(
|
1261 |
+
self,
|
1262 |
+
hidden_states,
|
1263 |
+
attention_mask=None,
|
1264 |
+
position_ids=None,
|
1265 |
+
past_key_value=None,
|
1266 |
+
output_attentions=False,
|
1267 |
+
use_cache=False,
|
1268 |
+
) -> tuple:
|
1269 |
+
residual = hidden_states
|
1270 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1271 |
+
|
1272 |
+
# Self Attention
|
1273 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1274 |
+
hidden_states=hidden_states,
|
1275 |
+
attention_mask=attention_mask,
|
1276 |
+
position_ids=position_ids,
|
1277 |
+
past_key_value=past_key_value,
|
1278 |
+
output_attentions=output_attentions,
|
1279 |
+
use_cache=use_cache,
|
1280 |
+
)
|
1281 |
+
hidden_states = residual + hidden_states
|
1282 |
+
|
1283 |
+
# Fully Connected
|
1284 |
+
residual = hidden_states
|
1285 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1286 |
+
mlp_outs: MoEMlpOutput = self.mlp(hidden_states, attention_mask=attention_mask)
|
1287 |
+
hidden_states = residual + mlp_outs.hidden_states
|
1288 |
+
|
1289 |
+
outputs = (
|
1290 |
+
hidden_states,
|
1291 |
+
mlp_outs.balance_loss,
|
1292 |
+
mlp_outs.num_dropped_tokens,
|
1293 |
+
mlp_outs.gate_load,
|
1294 |
+
mlp_outs.gate_importance,
|
1295 |
+
)
|
1296 |
+
if output_attentions:
|
1297 |
+
outputs += (self_attn_weights,)
|
1298 |
+
if use_cache:
|
1299 |
+
outputs += (present_key_value,)
|
1300 |
+
|
1301 |
+
return outputs
|
1302 |
+
|
1303 |
+
|
1304 |
+
class LlamaMoEPreTrainedModel(PreTrainedModel):
|
1305 |
+
config_class = LlamaMoEConfig
|
1306 |
+
base_model_prefix = "model"
|
1307 |
+
supports_gradient_checkpointing = True
|
1308 |
+
_no_split_modules = ["LlamaMoEDecoderLayer"]
|
1309 |
+
_skip_keys_device_placement = "past_key_values"
|
1310 |
+
_supports_flash_attn_2 = True
|
1311 |
+
|
1312 |
+
def _init_weights(self, module):
|
1313 |
+
std = self.config.initializer_range
|
1314 |
+
if isinstance(module, nn.Linear):
|
1315 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1316 |
+
if module.bias is not None:
|
1317 |
+
module.bias.data.zero_()
|
1318 |
+
elif isinstance(module, nn.Embedding):
|
1319 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1320 |
+
if module.padding_idx is not None:
|
1321 |
+
module.weight.data[module.padding_idx].zero_()
|
1322 |
+
|
1323 |
+
|
1324 |
+
class LlamaMoEModel(LlamaMoEPreTrainedModel):
|
1325 |
+
def __init__(self, config: LlamaMoEConfig):
|
1326 |
+
super().__init__(config)
|
1327 |
+
self.padding_idx = config.pad_token_id
|
1328 |
+
self.vocab_size = config.vocab_size
|
1329 |
+
|
1330 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1331 |
+
self.layers = nn.ModuleList(
|
1332 |
+
[LlamaMoEDecoderLayer(config, i) for i in range(config.num_hidden_layers)]
|
1333 |
+
)
|
1334 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1335 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1336 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1337 |
+
self.gradient_checkpointing = False
|
1338 |
+
self.post_init()
|
1339 |
+
|
1340 |
+
def get_input_embeddings(self):
|
1341 |
+
return self.embed_tokens
|
1342 |
+
|
1343 |
+
def set_input_embeddings(self, value):
|
1344 |
+
self.embed_tokens = value
|
1345 |
+
|
1346 |
+
def forward(
|
1347 |
+
self,
|
1348 |
+
input_ids=None,
|
1349 |
+
attention_mask=None,
|
1350 |
+
position_ids=None,
|
1351 |
+
past_key_values=None,
|
1352 |
+
inputs_embeds=None,
|
1353 |
+
use_cache=None,
|
1354 |
+
output_attentions=None,
|
1355 |
+
output_hidden_states=None,
|
1356 |
+
return_dict=None,
|
1357 |
+
):
|
1358 |
+
output_attentions = (
|
1359 |
+
output_attentions
|
1360 |
+
if output_attentions is not None
|
1361 |
+
else self.config.output_attentions
|
1362 |
+
)
|
1363 |
+
output_hidden_states = (
|
1364 |
+
output_hidden_states
|
1365 |
+
if output_hidden_states is not None
|
1366 |
+
else self.config.output_hidden_states
|
1367 |
+
)
|
1368 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1369 |
+
|
1370 |
+
return_dict = (
|
1371 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
# retrieve input_ids and inputs_embeds
|
1375 |
+
if input_ids is not None and inputs_embeds is not None:
|
1376 |
+
raise ValueError(
|
1377 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at"
|
1378 |
+
" the same time"
|
1379 |
+
)
|
1380 |
+
elif input_ids is not None:
|
1381 |
+
batch_size, seq_length = input_ids.shape
|
1382 |
+
elif inputs_embeds is not None:
|
1383 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1384 |
+
else:
|
1385 |
+
raise ValueError(
|
1386 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
if self.gradient_checkpointing and self.training:
|
1390 |
+
if use_cache:
|
1391 |
+
logger.warning_once(
|
1392 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1393 |
+
)
|
1394 |
+
use_cache = False
|
1395 |
+
|
1396 |
+
past_key_values_length = 0
|
1397 |
+
if use_cache:
|
1398 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1399 |
+
if use_legacy_cache:
|
1400 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1401 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1402 |
+
|
1403 |
+
if position_ids is None:
|
1404 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1405 |
+
position_ids = torch.arange(
|
1406 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1407 |
+
)
|
1408 |
+
position_ids = position_ids.unsqueeze(0)
|
1409 |
+
|
1410 |
+
if inputs_embeds is None:
|
1411 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1412 |
+
|
1413 |
+
if self._use_flash_attention_2:
|
1414 |
+
# 2d mask is passed through the layers
|
1415 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1416 |
+
elif self._use_sdpa and not output_attentions:
|
1417 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1418 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1419 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1420 |
+
attention_mask,
|
1421 |
+
(batch_size, seq_length),
|
1422 |
+
inputs_embeds,
|
1423 |
+
past_key_values_length,
|
1424 |
+
)
|
1425 |
+
else:
|
1426 |
+
# 4d mask is passed through the layers
|
1427 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1428 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1429 |
+
)
|
1430 |
+
|
1431 |
+
hidden_states = inputs_embeds
|
1432 |
+
balance_loss = 0.0
|
1433 |
+
|
1434 |
+
# decoder layers
|
1435 |
+
all_hidden_states = () if output_hidden_states else None
|
1436 |
+
all_self_attns = () if output_attentions else None
|
1437 |
+
next_decoder_cache = None
|
1438 |
+
|
1439 |
+
num_dropped_tokens = ()
|
1440 |
+
gate_load = ()
|
1441 |
+
gate_importance = ()
|
1442 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1443 |
+
if output_hidden_states:
|
1444 |
+
all_hidden_states += (hidden_states,)
|
1445 |
+
|
1446 |
+
if self.gradient_checkpointing and self.training:
|
1447 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1448 |
+
decoder_layer.__call__,
|
1449 |
+
hidden_states,
|
1450 |
+
attention_mask,
|
1451 |
+
position_ids,
|
1452 |
+
past_key_values,
|
1453 |
+
output_attentions,
|
1454 |
+
use_cache,
|
1455 |
+
)
|
1456 |
+
else:
|
1457 |
+
layer_outputs = decoder_layer(
|
1458 |
+
hidden_states,
|
1459 |
+
attention_mask=attention_mask,
|
1460 |
+
position_ids=position_ids,
|
1461 |
+
past_key_value=past_key_values,
|
1462 |
+
output_attentions=output_attentions,
|
1463 |
+
use_cache=use_cache,
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
hidden_states = layer_outputs[0]
|
1467 |
+
if layer_outputs[1] is not None:
|
1468 |
+
balance_loss += layer_outputs[1]
|
1469 |
+
|
1470 |
+
if use_cache:
|
1471 |
+
next_decoder_cache = layer_outputs[6 if output_attentions else 5]
|
1472 |
+
|
1473 |
+
if output_attentions:
|
1474 |
+
all_self_attns += (layer_outputs[5],)
|
1475 |
+
|
1476 |
+
num_dropped_tokens += (layer_outputs[2],)
|
1477 |
+
gate_load += (layer_outputs[3],)
|
1478 |
+
gate_importance += (layer_outputs[4],)
|
1479 |
+
|
1480 |
+
hidden_states = self.norm(hidden_states)
|
1481 |
+
|
1482 |
+
# add hidden states from the last decoder layer
|
1483 |
+
if output_hidden_states:
|
1484 |
+
all_hidden_states += (hidden_states,)
|
1485 |
+
|
1486 |
+
next_cache = None
|
1487 |
+
if use_cache:
|
1488 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1489 |
+
if not return_dict:
|
1490 |
+
return tuple(
|
1491 |
+
v
|
1492 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1493 |
+
if v is not None
|
1494 |
+
)
|
1495 |
+
return BaseMoEModelOutputWithPast(
|
1496 |
+
last_hidden_state=hidden_states,
|
1497 |
+
balance_loss=balance_loss,
|
1498 |
+
past_key_values=next_cache,
|
1499 |
+
hidden_states=all_hidden_states,
|
1500 |
+
attentions=all_self_attns,
|
1501 |
+
num_dropped_tokens=num_dropped_tokens,
|
1502 |
+
gate_load=gate_load,
|
1503 |
+
gate_importance=gate_importance,
|
1504 |
+
)
|
1505 |
+
|
1506 |
+
def reset_gate_network(self):
|
1507 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1508 |
+
decoder_layer.reset_gate_network()
|
1509 |
+
|
1510 |
+
def reset_experts(self):
|
1511 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1512 |
+
decoder_layer.reset_experts()
|
1513 |
+
|
1514 |
+
|
1515 |
+
class LlamaMoEForCausalLM(LlamaMoEPreTrainedModel):
|
1516 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1517 |
+
|
1518 |
+
def __init__(self, config):
|
1519 |
+
super().__init__(config)
|
1520 |
+
self.model = LlamaMoEModel(config)
|
1521 |
+
self.pretraining_tp = config.pretraining_tp
|
1522 |
+
self.vocab_size = config.vocab_size
|
1523 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1524 |
+
|
1525 |
+
# Initialize weights and apply final processing
|
1526 |
+
self.post_init()
|
1527 |
+
|
1528 |
+
def get_input_embeddings(self):
|
1529 |
+
return self.model.embed_tokens
|
1530 |
+
|
1531 |
+
def set_input_embeddings(self, value):
|
1532 |
+
self.model.embed_tokens = value
|
1533 |
+
|
1534 |
+
def get_output_embeddings(self):
|
1535 |
+
return self.lm_head
|
1536 |
+
|
1537 |
+
def set_output_embeddings(self, new_embeddings):
|
1538 |
+
self.lm_head = new_embeddings
|
1539 |
+
|
1540 |
+
def set_decoder(self, decoder):
|
1541 |
+
self.model = decoder
|
1542 |
+
|
1543 |
+
def get_decoder(self):
|
1544 |
+
return self.model
|
1545 |
+
|
1546 |
+
def forward(
|
1547 |
+
self,
|
1548 |
+
input_ids=None,
|
1549 |
+
attention_mask=None,
|
1550 |
+
position_ids=None,
|
1551 |
+
past_key_values=None,
|
1552 |
+
inputs_embeds=None,
|
1553 |
+
labels=None,
|
1554 |
+
use_cache=None,
|
1555 |
+
output_attentions=None,
|
1556 |
+
output_hidden_states=None,
|
1557 |
+
return_dict=None,
|
1558 |
+
**kwargs,
|
1559 |
+
):
|
1560 |
+
output_attentions = (
|
1561 |
+
output_attentions
|
1562 |
+
if output_attentions is not None
|
1563 |
+
else self.config.output_attentions
|
1564 |
+
)
|
1565 |
+
output_hidden_states = (
|
1566 |
+
output_hidden_states
|
1567 |
+
if output_hidden_states is not None
|
1568 |
+
else self.config.output_hidden_states
|
1569 |
+
)
|
1570 |
+
return_dict = (
|
1571 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1572 |
+
)
|
1573 |
+
|
1574 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1575 |
+
outputs: BaseMoEModelOutputWithPast = self.model(
|
1576 |
+
input_ids=input_ids,
|
1577 |
+
attention_mask=attention_mask,
|
1578 |
+
position_ids=position_ids,
|
1579 |
+
past_key_values=past_key_values,
|
1580 |
+
inputs_embeds=inputs_embeds,
|
1581 |
+
use_cache=use_cache,
|
1582 |
+
output_attentions=output_attentions,
|
1583 |
+
output_hidden_states=output_hidden_states,
|
1584 |
+
return_dict=return_dict,
|
1585 |
+
)
|
1586 |
+
|
1587 |
+
hidden_states = outputs.last_hidden_state
|
1588 |
+
logits = self.lm_head(hidden_states)
|
1589 |
+
|
1590 |
+
loss = None
|
1591 |
+
if labels is not None:
|
1592 |
+
# Shift so that tokens < n predict n
|
1593 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1594 |
+
shift_labels = labels[..., 1:].contiguous()
|
1595 |
+
# Flatten the tokens
|
1596 |
+
loss_fct = nn.CrossEntropyLoss()
|
1597 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1598 |
+
shift_labels = shift_labels.view(-1)
|
1599 |
+
# Enable model parallelism
|
1600 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1601 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1602 |
+
if outputs.balance_loss is not None and outputs.balance_loss > 0:
|
1603 |
+
loss += outputs.balance_loss
|
1604 |
+
|
1605 |
+
if not return_dict:
|
1606 |
+
output = (logits,) + outputs[1:]
|
1607 |
+
return (loss,) + output if loss is not None else output
|
1608 |
+
|
1609 |
+
return MoECausalLMOutputWithPast(
|
1610 |
+
loss=loss,
|
1611 |
+
logits=logits,
|
1612 |
+
past_key_values=outputs.past_key_values,
|
1613 |
+
hidden_states=outputs.hidden_states,
|
1614 |
+
attentions=outputs.attentions,
|
1615 |
+
num_dropped_tokens=outputs.num_dropped_tokens,
|
1616 |
+
balance_loss=outputs.balance_loss,
|
1617 |
+
gate_load=outputs.gate_load,
|
1618 |
+
gate_importance=outputs.gate_importance,
|
1619 |
+
)
|
1620 |
+
|
1621 |
+
def prepare_inputs_for_generation(
|
1622 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1623 |
+
):
|
1624 |
+
if past_key_values is not None:
|
1625 |
+
if isinstance(past_key_values, Cache):
|
1626 |
+
cache_length = past_key_values.get_seq_length()
|
1627 |
+
past_length = past_key_values.seen_tokens
|
1628 |
+
max_cache_length = past_key_values.get_max_length()
|
1629 |
+
else:
|
1630 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1631 |
+
max_cache_length = None
|
1632 |
+
|
1633 |
+
# Keep only the unprocessed tokens:
|
1634 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1635 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1636 |
+
# input)
|
1637 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1638 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1639 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1640 |
+
# input_ids based on the past_length.
|
1641 |
+
elif past_length < input_ids.shape[1]:
|
1642 |
+
input_ids = input_ids[:, past_length:]
|
1643 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1644 |
+
|
1645 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1646 |
+
if (
|
1647 |
+
max_cache_length is not None
|
1648 |
+
and attention_mask is not None
|
1649 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1650 |
+
):
|
1651 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1652 |
+
|
1653 |
+
position_ids = kwargs.get("position_ids", None)
|
1654 |
+
if attention_mask is not None and position_ids is None:
|
1655 |
+
# create position_ids on the fly for batch generation
|
1656 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1657 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1658 |
+
if past_key_values:
|
1659 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1660 |
+
|
1661 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1662 |
+
if inputs_embeds is not None and past_key_values is None:
|
1663 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1664 |
+
else:
|
1665 |
+
model_inputs = {"input_ids": input_ids}
|
1666 |
+
|
1667 |
+
model_inputs.update(
|
1668 |
+
{
|
1669 |
+
"position_ids": position_ids,
|
1670 |
+
"past_key_values": past_key_values,
|
1671 |
+
"use_cache": kwargs.get("use_cache"),
|
1672 |
+
"attention_mask": attention_mask,
|
1673 |
+
}
|
1674 |
+
)
|
1675 |
+
return model_inputs
|
1676 |
+
|
1677 |
+
@staticmethod
|
1678 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1679 |
+
reordered_past = ()
|
1680 |
+
for layer_past in past_key_values:
|
1681 |
+
reordered_past += (
|
1682 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1683 |
+
)
|
1684 |
+
return reordered_past
|
1685 |
+
|
1686 |
+
def reset_gate_network(self):
|
1687 |
+
self.model.reset_gate_network()
|
1688 |
+
|
1689 |
+
def reset_experts(self):
|
1690 |
+
self.model.reset_experts()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"bos_token": "<s>",
|
31 |
+
"clean_up_tokenization_spaces": false,
|
32 |
+
"eos_token": "</s>",
|
33 |
+
"legacy": false,
|
34 |
+
"model_max_length": 2048,
|
35 |
+
"pad_token": "<unk>",
|
36 |
+
"padding_side": "right",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false,
|
42 |
+
"use_fast": true
|
43 |
+
}
|