--- base_model: meta-llama/Meta-Llama-3-8B datasets: - llama-duo/synth_classification_dataset_dedup library_name: peft license: llama3 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: llama3-8b-classification-gpt4o-100k results: [] --- # llama3-8b-classification-gpt4o-100k This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co./meta-llama/Meta-Llama-3-8B) on the llama-duo/synth_classification_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 2.0032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9183 | 1.0 | 237 | 1.6517 | | 0.8583 | 2.0 | 474 | 1.6295 | | 0.8179 | 3.0 | 711 | 1.6559 | | 0.7533 | 4.0 | 948 | 1.6894 | | 0.716 | 5.0 | 1185 | 1.7251 | | 0.6876 | 6.0 | 1422 | 1.7830 | | 0.6344 | 7.0 | 1659 | 1.8557 | | 0.591 | 8.0 | 1896 | 1.9240 | | 0.5677 | 9.0 | 2133 | 1.9842 | | 0.5648 | 10.0 | 2370 | 2.0032 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1