File size: 2,061 Bytes
6b17ef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- llama-duo/synth_summarize_dataset_dedup
base_model: google/gemma-7b
model-index:
- name: gemma7b-summarize-claude3sonnet-4k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma7b-summarize-claude3sonnet-4k
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the llama-duo/synth_summarize_dataset_dedup dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0527
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 21.1609 | 1.0 | 10 | 12.3637 |
| 14.2403 | 2.0 | 20 | 7.7626 |
| 12.4548 | 3.0 | 30 | 6.8741 |
| 8.6478 | 4.0 | 40 | 6.1412 |
| 3.1923 | 5.0 | 50 | 4.4401 |
| 1.9614 | 6.0 | 60 | 3.3292 |
| 1.692 | 7.0 | 70 | 3.1272 |
| 1.5661 | 8.0 | 80 | 3.0726 |
| 1.5417 | 9.0 | 90 | 3.0536 |
| 1.5287 | 10.0 | 100 | 3.0527 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1 |