--- library_name: peft tags: - alignment-handbook - generated_from_trainer datasets: - llama-duo/synth_summarize_dataset_dedup base_model: google/gemma-7b model-index: - name: gemma7b-summarize-claude3sonnet-256k results: [] --- # gemma7b-summarize-claude3sonnet-256k This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 2.4860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.964 | 0.9992 | 606 | 2.4850 | | 0.8499 | 2.0 | 1213 | 2.4393 | | 0.7939 | 2.9992 | 1819 | 2.4242 | | 0.7465 | 4.0 | 2426 | 2.4363 | | 0.7312 | 4.9992 | 3032 | 2.4391 | | 0.7253 | 6.0 | 3639 | 2.4593 | | 0.7042 | 6.9992 | 4245 | 2.4711 | | 0.6928 | 8.0 | 4852 | 2.4713 | | 0.6924 | 8.9992 | 5458 | 2.4815 | | 0.6936 | 9.9918 | 6060 | 2.4860 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1