Upload myinfer.py
Browse files- myinfer.py +101 -24
myinfer.py
CHANGED
@@ -1,12 +1,102 @@
|
|
|
|
|
|
|
|
1 |
import os,sys,pdb,torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
f0up_key=sys.argv[1]
|
3 |
input_path=sys.argv[2]
|
4 |
index_path=sys.argv[3]
|
5 |
-
|
6 |
opt_path=sys.argv[5]
|
7 |
model_path=sys.argv[6]
|
|
|
|
|
|
|
8 |
print(sys.argv)
|
9 |
-
|
10 |
now_dir=os.getcwd()
|
11 |
sys.path.append(now_dir)
|
12 |
from vc_infer_pipeline import VC
|
@@ -15,19 +105,7 @@ from my_utils import load_audio
|
|
15 |
from fairseq import checkpoint_utils
|
16 |
from scipy.io import wavfile
|
17 |
|
18 |
-
|
19 |
-
# f0up_key=0
|
20 |
-
# input_path=r"E:\codes\py39\RVC-beta\todo-songs\1111.wav"
|
21 |
-
# index_path=r"E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index"
|
22 |
-
# npy_path =r"E:\codes\py39\logs\mi-test\total_fea.npy"
|
23 |
-
# opt_path ="test.wav"
|
24 |
-
# model_path="mi-test.pth"
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
hubert_model=None
|
29 |
-
is_half=False
|
30 |
-
device="cuda"
|
31 |
def load_hubert():
|
32 |
global hubert_model
|
33 |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",)
|
@@ -37,8 +115,7 @@ def load_hubert():
|
|
37 |
else:hubert_model = hubert_model.float()
|
38 |
hubert_model.eval()
|
39 |
|
40 |
-
|
41 |
-
def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,file_big_npy,index_rate):#spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
42 |
global tgt_sr,net_g,vc,hubert_model
|
43 |
if input_audio is None:return "You need to upload an audio", None
|
44 |
f0_up_key = int(f0_up_key)
|
@@ -46,16 +123,16 @@ def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,file_big_np
|
|
46 |
times = [0, 0, 0]
|
47 |
if(hubert_model==None):load_hubert()
|
48 |
if_f0 = cpt.get("f0", 1)
|
49 |
-
audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=f0_file)
|
|
|
50 |
print(times)
|
51 |
return audio_opt
|
52 |
|
53 |
|
54 |
-
def get_vc(
|
55 |
-
global n_spk,tgt_sr,net_g,vc,cpt
|
56 |
-
|
57 |
-
|
58 |
-
cpt = torch.load(person, map_location="cpu")
|
59 |
tgt_sr = cpt["config"][-1]
|
60 |
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk
|
61 |
if_f0=cpt.get("f0",1)
|
@@ -68,12 +145,12 @@ def get_vc(sid):
|
|
68 |
net_g.eval().to(device)
|
69 |
if (is_half):net_g = net_g.half()
|
70 |
else:net_g = net_g.float()
|
71 |
-
vc = VC(tgt_sr,
|
72 |
n_spk=cpt["config"][-3]
|
73 |
# return {"visible": True,"maximum": n_spk, "__type__": "update"}
|
74 |
|
75 |
|
76 |
get_vc(model_path)
|
77 |
-
wav_opt=vc_single(0,input_path,f0up_key,None,
|
78 |
wavfile.write(opt_path, tgt_sr, wav_opt)
|
79 |
|
|
|
1 |
+
'''
|
2 |
+
runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True
|
3 |
+
'''
|
4 |
import os,sys,pdb,torch
|
5 |
+
now_dir = os.getcwd()
|
6 |
+
sys.path.append(now_dir)
|
7 |
+
import argparse
|
8 |
+
import glob
|
9 |
+
import sys
|
10 |
+
import torch
|
11 |
+
from multiprocessing import cpu_count
|
12 |
+
class Config:
|
13 |
+
def __init__(self,device,is_half):
|
14 |
+
self.device = device
|
15 |
+
self.is_half = is_half
|
16 |
+
self.n_cpu = 0
|
17 |
+
self.gpu_name = None
|
18 |
+
self.gpu_mem = None
|
19 |
+
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
20 |
+
|
21 |
+
def device_config(self) -> tuple:
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
i_device = int(self.device.split(":")[-1])
|
24 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
25 |
+
if (
|
26 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
27 |
+
or "P40" in self.gpu_name.upper()
|
28 |
+
or "1060" in self.gpu_name
|
29 |
+
or "1070" in self.gpu_name
|
30 |
+
or "1080" in self.gpu_name
|
31 |
+
):
|
32 |
+
print("16系/10系显卡和P40强制单精度")
|
33 |
+
self.is_half = False
|
34 |
+
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
35 |
+
with open(f"configs/{config_file}", "r") as f:
|
36 |
+
strr = f.read().replace("true", "false")
|
37 |
+
with open(f"configs/{config_file}", "w") as f:
|
38 |
+
f.write(strr)
|
39 |
+
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
40 |
+
strr = f.read().replace("3.7", "3.0")
|
41 |
+
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
42 |
+
f.write(strr)
|
43 |
+
else:
|
44 |
+
self.gpu_name = None
|
45 |
+
self.gpu_mem = int(
|
46 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
47 |
+
/ 1024
|
48 |
+
/ 1024
|
49 |
+
/ 1024
|
50 |
+
+ 0.4
|
51 |
+
)
|
52 |
+
if self.gpu_mem <= 4:
|
53 |
+
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
54 |
+
strr = f.read().replace("3.7", "3.0")
|
55 |
+
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
56 |
+
f.write(strr)
|
57 |
+
elif torch.backends.mps.is_available():
|
58 |
+
print("没有发现支持的N卡, 使用MPS进行推理")
|
59 |
+
self.device = "mps"
|
60 |
+
else:
|
61 |
+
print("没有发现支持的N卡, 使用CPU进行推理")
|
62 |
+
self.device = "cpu"
|
63 |
+
self.is_half = True
|
64 |
+
|
65 |
+
if self.n_cpu == 0:
|
66 |
+
self.n_cpu = cpu_count()
|
67 |
+
|
68 |
+
if self.is_half:
|
69 |
+
# 6G显存配置
|
70 |
+
x_pad = 3
|
71 |
+
x_query = 10
|
72 |
+
x_center = 60
|
73 |
+
x_max = 65
|
74 |
+
else:
|
75 |
+
# 5G显存配置
|
76 |
+
x_pad = 1
|
77 |
+
x_query = 6
|
78 |
+
x_center = 38
|
79 |
+
x_max = 41
|
80 |
+
|
81 |
+
if self.gpu_mem != None and self.gpu_mem <= 4:
|
82 |
+
x_pad = 1
|
83 |
+
x_query = 5
|
84 |
+
x_center = 30
|
85 |
+
x_max = 32
|
86 |
+
|
87 |
+
return x_pad, x_query, x_center, x_max
|
88 |
+
|
89 |
f0up_key=sys.argv[1]
|
90 |
input_path=sys.argv[2]
|
91 |
index_path=sys.argv[3]
|
92 |
+
f0method=sys.argv[4]#harvest or pm
|
93 |
opt_path=sys.argv[5]
|
94 |
model_path=sys.argv[6]
|
95 |
+
index_rate=float(sys.argv[7])
|
96 |
+
device=sys.argv[8]
|
97 |
+
is_half=bool(sys.argv[9])
|
98 |
print(sys.argv)
|
99 |
+
config=Config(device,is_half)
|
100 |
now_dir=os.getcwd()
|
101 |
sys.path.append(now_dir)
|
102 |
from vc_infer_pipeline import VC
|
|
|
105 |
from fairseq import checkpoint_utils
|
106 |
from scipy.io import wavfile
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
hubert_model=None
|
|
|
|
|
109 |
def load_hubert():
|
110 |
global hubert_model
|
111 |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",)
|
|
|
115 |
else:hubert_model = hubert_model.float()
|
116 |
hubert_model.eval()
|
117 |
|
118 |
+
def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate):
|
|
|
119 |
global tgt_sr,net_g,vc,hubert_model
|
120 |
if input_audio is None:return "You need to upload an audio", None
|
121 |
f0_up_key = int(f0_up_key)
|
|
|
123 |
times = [0, 0, 0]
|
124 |
if(hubert_model==None):load_hubert()
|
125 |
if_f0 = cpt.get("f0", 1)
|
126 |
+
# audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=f0_file)
|
127 |
+
audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,f0_file=f0_file)
|
128 |
print(times)
|
129 |
return audio_opt
|
130 |
|
131 |
|
132 |
+
def get_vc(model_path):
|
133 |
+
global n_spk,tgt_sr,net_g,vc,cpt,device,is_half
|
134 |
+
print("loading pth %s"%model_path)
|
135 |
+
cpt = torch.load(model_path, map_location="cpu")
|
|
|
136 |
tgt_sr = cpt["config"][-1]
|
137 |
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk
|
138 |
if_f0=cpt.get("f0",1)
|
|
|
145 |
net_g.eval().to(device)
|
146 |
if (is_half):net_g = net_g.half()
|
147 |
else:net_g = net_g.float()
|
148 |
+
vc = VC(tgt_sr, config)
|
149 |
n_spk=cpt["config"][-3]
|
150 |
# return {"visible": True,"maximum": n_spk, "__type__": "update"}
|
151 |
|
152 |
|
153 |
get_vc(model_path)
|
154 |
+
wav_opt=vc_single(0,input_path,f0up_key,None,f0method,index_path,index_rate)
|
155 |
wavfile.write(opt_path, tgt_sr, wav_opt)
|
156 |
|