--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.6879136189481017 --- # beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co./microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.8504 - Accuracy: 0.6879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1617 | 1.0 | 202 | 1.0081 | 0.6270 | | 1.0604 | 2.0 | 404 | 0.9516 | 0.6524 | | 0.998 | 3.0 | 606 | 0.8857 | 0.6809 | | 0.9971 | 4.0 | 808 | 0.8504 | 0.6879 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1