--- license: mit language: - en metrics: - accuracy - pass rate base_model: - meta-llama/Meta-Llama-3-8B-Instruct - deepseek-ai/deepseek-coder-7b-instruct-v1.5 library_name: transformers, alignment-handbook pipeline_tag: question-answering --- ### 1. Introduction of this repository Official Repository of "Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models". NeurIPS 2024 - **Paper Link:** (https://arxiv.org/abs/2409.19667/) - **GitHub Repository:** (https://github.com/BUPT-GAMMA/ProGraph) ### 2. Pipelines and Experimental Results #### The pipeline of ProGraph benchmark construction #### The pipeline of LLM4Graph dataset construction and corresponding model enhancement. #### The pass rate (left) and accuracy (right) of open-source models with instruction tuning. #### Compilation error statistics for open source models. #### Performance (%) of open-source models regarding different question types. | Model | Method | True/False | | Drawing | | Calculation | | Hybrid | | | --- | --- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | | Pass Rate | Accuracy | Pass Rate | Accuracy | Pass Rate | Accuracy | Pass Rate | Accuracy | | Llama 3 | No Fine-tune | 43.6 | 33.3 | 28.3 | 10.0 | 15.6 | 12.5 | 26.8 | 8.3 | | | Code Only | 82.1 | 71.8 | 59.2 | 42.0 | 34.4 | 31.3 | 60.7 | **43.6** | | | Code+RAG 3 | **84.6** | 44.0 | 56.9 | 29.0 | 50.0 | 37.5 | 66.1 | 37.2 | | | Code+RAG 5 | 66.7 | 36.8 | 53.5 | 25.4 | 37.5 | 28.1 | 60.7 | 36.3 | | | Code+RAG 7 | 66.7 | 37.2 | 50.9 | 24.4 | 50.0 | 35.9 | 64.3 | 39.3 | | | Doc+Code | 82.1 | **73.1** | 64.4 | 43.7 | 40.6 | 31.8 | **67.9** | 41.3 | | Deepseek Coder | No Fine-tune | 66.7 | 41.5 | 47.8 | 22.1 | **53.1** | 39.4 | 46.4 | 18.2 | | | Code Only | 71.8 | 61.5 | 60.0 | 41.1 | 50.0 | **45.3** | 62.5 | 42.1 | | | Code+RAG 3 | 71.8 | 48.3 | 57.7 | 32.2 | **53.1** | **45.3** | 44.6 | 22.8 | | | Code+RAG 5 | 71.8 | 53.9 | 50.7 | 29.3 | 40.6 | 34.4 | 39.3 | 28.6 | | | Code+RAG 7 | 74.4 | 54.7 | 50.4 | 28.7 | 37.5 | 34.4 | 48.2 | 31.4 | | | Doc+Code | 79.5 | 68.0 | **66.2** | **46.0** | 37.5 | 34.4 | 66.1 | 42.3 | ### 3. How to Use Here give some examples of how to use our models. #### Chat Model Inference ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList from peft import PeftModel device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_name_or_path = 'deepseek-ai/deepseek-coder-7b-instruct-v1.5' # You can use Llama-3-8B by 'meta-llama/Meta-Llama-3-8B-Instruct'. # You can also use your local path. peft_model_path = 'https://huggingface.co./lixin4sky/ProGraph/tree/main/deepseek-code-only' # Or other models in the repository. tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(device) peft_model = PeftModel.from_pretrained(model, peft_model_path).to(device) input_text = '' # the question. message = [ {"role": "user", "content": f"{input_text}"}, ] input_ids = tokenizer.apply_chat_template(conversation=message, tokenize=True, add_generation_prompt=False, return_tensors='pt') input_ids = input_ids.to("cuda:0" if torch.cuda.is_available() else "cpu") with torch.inference_mode(): output_ids = model.generate(input_ids=input_ids[:, :-3], max_new_tokens=4096, do_sample=False, pad_token_id=2) response = tokenizer.batch_decode(output_ids.detach().cpu().numpy(), skip_special_tokens = True) print(response) ``` You can find more tutorials in our GitHub repository: (https://github.com/BUPT-GAMMA/ProGraph) ### 4. Next Level - **GraphTeam:** (https://arxiv.org/abs/2410.18032) - **Github Repository:** (https://github.com/BUPT-GAMMA/GraphTeam)