initial version of PPO for LunarLander-v2
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 136.25 +/- 87.62
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe23c283cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe23c283d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe23c283dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe23c283e60>", "_build": "<function ActorCriticPolicy._build at 0x7fe23c283ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe23c283f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe23c28a050>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe23c28a0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe23c28a170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe23c28a200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe23c28a290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe23c2e1090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651681421.955626, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGak9LzDJVu6fUCsuWZo0jIDH6K7LhfHOAAAgD8AAIA/zUT/O4+2NboGtb87UntROMmpiDhAU4S6AACAPwAAgD8Na+m9FC6duEUTfbyH/K42b9XCuwqkIrYAAIA/AAAAAE1rBD0pmCS6K9KjOiKdXjVJadw6aoe8uQAAgD8AAIA/s8GUvXuCgbo6hJm5gFm1NQejI7p1rq84AACAPwAAgD9T/Tq+bPiSu26onjug8go5l+YKPcjL7bkAAIA/AACAP0CDsT24RrI6dPo7vufRajygj3u7+3J2vQAAAAAAAAAAgKvQPeHAhLrITIe8w/ketsk9iLpKGow1AACAPwAAgD9NQW09CkdguSodLbz288I8ezYEOpFXnroAAIA/AACAP2ZSADzsedy5Yc2GOyLrGzgtXNw6TyiktwAAgD8AAIA/rbPUvsPDPT1VtnG9YMaovhYoqDxEoQs9AAAAAAAAAACzHrq9w/1hujZUIbs0QN82QgBpuzQzOjoAAIA/AACAPwBEp7wKxwS5ouhdPB0IhjuOrI074IhqPAAAAAAAAIA/zRi0u/Y0ULqmX5W6D6OltX72sTl6Oa45AACAPwAAgD9+ZYO+1A3XPde5kL3DtZG+Jkz1vVPAKz0AAAAAAAAAAM1JvTyPbm66cqZLucxbpzXnlLe5WMlnOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvjPaqiRURcCUhpRSlIwBbJRLp4wBdJRHQIy3kOEug6F1fZQoaAZoCWgPQwjMKQExCUMzQJSGlFKUaBVLuWgWR0CMu9BXS0BwdX2UKGgGaAloD0MIDk+vlGVUYkCUhpRSlGgVTegDaBZHQIy8m6RQrMF1fZQoaAZoCWgPQwhstBzoobZiQJSGlFKUaBVN6ANoFkdAjMAcAR02cnV9lChoBmgJaA9DCIIeatswajxAlIaUUpRoFUu9aBZHQIzFLfm9xqB1fZQoaAZoCWgPQwjCwd7EkG5eQJSGlFKUaBVN6ANoFkdAjMYdL6DXe3V9lChoBmgJaA9DCGnJ42n5o2BAlIaUUpRoFU3oA2gWR0CMyIGhVU++dX2UKGgGaAloD0MIiuYBLPKjXECUhpRSlGgVTegDaBZHQIzIiMFUyYZ1fZQoaAZoCWgPQwgnT1lN13s+wJSGlFKUaBVLzmgWR0CM0vlnRLK3dX2UKGgGaAloD0MIxVVl3xUFPMCUhpRSlGgVS5loFkdAjNXj3VTaTXV9lChoBmgJaA9DCBDn4QSmfV1AlIaUUpRoFU3oA2gWR0CM2Xr8iwB6dX2UKGgGaAloD0MIu+zXne7EJMCUhpRSlGgVS65oFkdAjNruW8h9s3V9lChoBmgJaA9DCK01lNqLwERAlIaUUpRoFUvJaBZHQIzrSFmFrVR1fZQoaAZoCWgPQwgkJT0Mrc9bQJSGlFKUaBVN6ANoFkdAjTwFzEJjUnV9lChoBmgJaA9DCL0Yyon2fWFAlIaUUpRoFU3oA2gWR0CNSbChN/OMdX2UKGgGaAloD0MIjC/a4wUPYUCUhpRSlGgVTegDaBZHQI1R+vMbFS91fZQoaAZoCWgPQwhLOsrB7PdkQJSGlFKUaBVN6ANoFkdAjVgGo73fynV9lChoBmgJaA9DCFaCxeHM6mJAlIaUUpRoFU3oA2gWR0CNYdxtpEhJdX2UKGgGaAloD0MI4q5eRUaLYUCUhpRSlGgVTegDaBZHQI1vsHMUypJ1fZQoaAZoCWgPQwgQrRVtjv1DQJSGlFKUaBVLxmgWR0CNcHFCswL3dX2UKGgGaAloD0MIC3va4a8iU0CUhpRSlGgVTegDaBZHQI1ys7nxJ/Z1fZQoaAZoCWgPQwiPcFrwouFGwJSGlFKUaBVLsmgWR0CNc4qQRwqBdX2UKGgGaAloD0MImgrxSLx+ZECUhpRSlGgVTegDaBZHQI142JYT0xx1fZQoaAZoCWgPQwi62or9ZYdiQJSGlFKUaBVN6ANoFkdAjX19/jKgZnV9lChoBmgJaA9DCNVA8zl3dUFAlIaUUpRoFUvAaBZHQI1/BH5Jsft1fZQoaAZoCWgPQwgRxk/j3sFhQJSGlFKUaBVN6ANoFkdAjYHu7QLNOnV9lChoBmgJaA9DCNbiUwAMt2BAlIaUUpRoFU3oA2gWR0CNh6JtSAH3dX2UKGgGaAloD0MIVYSbjKoaYUCUhpRSlGgVTegDaBZHQI2LWVHFxXJ1fZQoaAZoCWgPQwhkraHUXkTpv5SGlFKUaBVLmmgWR0CNlOwu/UONdX2UKGgGaAloD0MII4Wy8PVlEcCUhpRSlGgVS8ZoFkdAjZfMP8Q7LnV9lChoBmgJaA9DCDAPmfIhxVpAlIaUUpRoFU3oA2gWR0CNm6e5nUUgdX2UKGgGaAloD0MI83aE0wITYkCUhpRSlGgVTegDaBZHQI2fQUvf0mN1fZQoaAZoCWgPQwh3SDFAootEQJSGlFKUaBVLwmgWR0CNn56fra/RdX2UKGgGaAloD0MIUz2Zf/SJWkCUhpRSlGgVTegDaBZHQI2gvM2WIGh1fZQoaAZoCWgPQwjeV+VC5QZcQJSGlFKUaBVN6ANoFkdAjbBtcfNiY3V9lChoBmgJaA9DCGLAkqtYwkdAlIaUUpRoFUvPaBZHQI2w5lpXZGt1fZQoaAZoCWgPQwi5jQbwFopMQJSGlFKUaBVLy2gWR0CNuAgQHzH0dX2UKGgGaAloD0MIEVZjCWtzLkCUhpRSlGgVS9RoFkdAjbjBnJ1aGHV9lChoBmgJaA9DCNPAj2rYul1AlIaUUpRoFU3oA2gWR0CN/UiA2AG0dX2UKGgGaAloD0MIYRdFD3wMG0CUhpRSlGgVS69oFkdAjf9TQE6kqXV9lChoBmgJaA9DCNYCe0ykLGdAlIaUUpRoFU3oA2gWR0COCNuJDVpcdX2UKGgGaAloD0MIMe9xpgmlQ8CUhpRSlGgVS3poFkdAjhBbG3nZCnV9lChoBmgJaA9DCF8Lem8MoUtAlIaUUpRoFU0SAWgWR0COJel67dzodX2UKGgGaAloD0MIniees4VWZUCUhpRSlGgVTegDaBZHQI4vNXq7iAF1fZQoaAZoCWgPQwiPbRlwFmNmQJSGlFKUaBVN6ANoFkdAjjAGDtgKGHV9lChoBmgJaA9DCGAF+G5zzGNAlIaUUpRoFU3oA2gWR0COMiB/7SApdX2UKGgGaAloD0MIeAlOfSDWZkCUhpRSlGgVTegDaBZHQI4y6VrylN11fZQoaAZoCWgPQwgh5Lz/j6NgQJSGlFKUaBVN6ANoFkdAjjenC4z7/HV9lChoBmgJaA9DCFad1QJ7K2NAlIaUUpRoFU3oA2gWR0COO7ucc2itdX2UKGgGaAloD0MIt5kK8UicQECUhpRSlGgVS7ZoFkdAjkhKDkELY3V9lChoBmgJaA9DCLpnXaPlBl5AlIaUUpRoFU3oA2gWR0COSlz90ihWdX2UKGgGaAloD0MIH6D7cmY8UkCUhpRSlGgVS+5oFkdAjlIZD7ZWaXV9lChoBmgJaA9DCMmQY+sZHWNAlIaUUpRoFU3oA2gWR0COVXAP/aQFdX2UKGgGaAloD0MIu0IfLOMGYECUhpRSlGgVTegDaBZHQI5cKR4hUzd1fZQoaAZoCWgPQwg09iUbD5RbQJSGlFKUaBVN6ANoFkdAjmG78ejmCHV9lChoBmgJaA9DCKmI00m2WhlAlIaUUpRoFUvGaBZHQI5i7F0gbId1fZQoaAZoCWgPQwgtza0Q1lBkQJSGlFKUaBVN6ANoFkdAjnI80tRNy3V9lChoBmgJaA9DCKEUrdwLQDrAlIaUUpRoFUuzaBZHQI5y6Rr8BMl1fZQoaAZoCWgPQwg7cTleAfdjQJSGlFKUaBVN6ANoFkdAjnpXJ5mh/XV9lChoBmgJaA9DCE8Hsp5au1tAlIaUUpRoFU3oA2gWR0COexpBX0XhdX2UKGgGaAloD0MIL8TqjzCUJ0CUhpRSlGgVS8VoFkdAjnwPtD2JznV9lChoBmgJaA9DCMdjBirjzyxAlIaUUpRoFUvmaBZHQI5+t/tpmEp1fZQoaAZoCWgPQwihgy7h0O86QJSGlFKUaBVL12gWR0COyTZoPCl8dX2UKGgGaAloD0MIxT2WPnTAZUCUhpRSlGgVTegDaBZHQI7NGgte2NN1fZQoaAZoCWgPQwj3rdaJy/EnwJSGlFKUaBVLm2gWR0COzdqoIfKZdX2UKGgGaAloD0MI3jmUoSpsXkCUhpRSlGgVTegDaBZHQI7UEB2fTTh1fZQoaAZoCWgPQwj7rDJTWu8TQJSGlFKUaBVLrGgWR0CO4KdQO4G2dX2UKGgGaAloD0MIF35wPvVoY0CUhpRSlGgVTegDaBZHQI7nfS8an751fZQoaAZoCWgPQwjToGgewMtkQJSGlFKUaBVN6ANoFkdAju+IUSIxg3V9lChoBmgJaA9DCO7uAbqv/mBAlIaUUpRoFU3oA2gWR0CO8xCojv/jdX2UKGgGaAloD0MIryXkg55xXkCUhpRSlGgVTegDaBZHQI7397BwdbR1fZQoaAZoCWgPQwg25J8ZxIhnQJSGlFKUaBVN6ANoFkdAjvxGcOLBK3V9lChoBmgJaA9DCAfSxaaVAv2/lIaUUpRoFUvhaBZHQI8GiJKraM91fZQoaAZoCWgPQwhkr3d/vDlTQJSGlFKUaBVN6ANoFkdAjwr4VqN6xHV9lChoBmgJaA9DCFT/IJIh5xFAlIaUUpRoFUvNaBZHQI8LlCVrylN1fZQoaAZoCWgPQwjQDU3ZaWJgQJSGlFKUaBVN6ANoFkdAjxKCmMwUQHV9lChoBmgJaA9DCCLGa17Vt11AlIaUUpRoFU3oA2gWR0CPFcS13MY/dX2UKGgGaAloD0MIqUpbXOOGY0CUhpRSlGgVTegDaBZHQI82apNsWO91fZQoaAZoCWgPQwi7SKEsfLNlQJSGlFKUaBVN6ANoFkdAj0DdS2phnnV9lChoBmgJaA9DCJxqLcxCCUlAlIaUUpRoFU3oA2gWR0CPQeBJ7LMcdX2UKGgGaAloD0MIkE3yI/5nYkCUhpRSlGgVTegDaBZHQI9DB8hLXcx1fZQoaAZoCWgPQwi9cVKY99peQJSGlFKUaBVN6ANoFkdAj5U1R+BpYnV9lChoBmgJaA9DCPGAsilXmFFAlIaUUpRoFUuxaBZHQI+WAb+98JF1fZQoaAZoCWgPQwhTWn9LgBBkQJSGlFKUaBVN6ANoFkdAj5Y3jMmnfnV9lChoBmgJaA9DCCQofoy5alxAlIaUUpRoFU3oA2gWR0CPnOwztTkydX2UKGgGaAloD0MITu0MU1uJWkCUhpRSlGgVTegDaBZHQI+p7ftQbdd1fZQoaAZoCWgPQwjM64hDNrBCQJSGlFKUaBVLwmgWR0CPse9oN/e+dX2UKGgGaAloD0MI/b5/8+LEQUCUhpRSlGgVS8xoFkdAj7KGR3eN1nV9lChoBmgJaA9DCAKDpE8romFAlIaUUpRoFU3oA2gWR0CPvFtF8XvZdX2UKGgGaAloD0MIOgg6WtXNYUCUhpRSlGgVTegDaBZHQI/BnoPkJa91fZQoaAZoCWgPQwjPaRZo91liQJSGlFKUaBVN6ANoFkdAj8YEvK2a2HV9lChoBmgJaA9DCEPmyqDao2ZAlIaUUpRoFU3oA2gWR0CP0IjQAuIzdX2UKGgGaAloD0MInGuYofFaR0CUhpRSlGgVS95oFkdAj9IH8CPp6nV9lChoBmgJaA9DCDlhwmhWL1tAlIaUUpRoFU3oA2gWR0CP1NrQgLZ0dX2UKGgGaAloD0MIBabTug0eRkCUhpRSlGgVTegDaBZHQI/Valk6Lfl1fZQoaAZoCWgPQwhLzLOS1iBjQJSGlFKUaBVN6ANoFkdAj9vq+rU9ZHV9lChoBmgJaA9DCGjon+DiemFAlIaUUpRoFU3oA2gWR0CP3txusLfDdX2UKGgGaAloD0MIl445z1jxYECUhpRSlGgVTegDaBZHQI/+XJq7Acl1fZQoaAZoCWgPQwgm/ijqTCVhQJSGlFKUaBVN6ANoFkdAkAQtECvHLnV9lChoBmgJaA9DCH8UdeYeJ2ZAlIaUUpRoFU3oA2gWR0CQBKhJRO1wdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d426c6333b372a9f28c9e4a281bd6c1642023ec696020b291041e6ec8650ab26
|
3 |
+
size 144003
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe23c283cb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe23c283d40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe23c283dd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe23c283e60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe23c283ef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe23c283f80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe23c28a050>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe23c28a0e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe23c28a170>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe23c28a200>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe23c28a290>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe23c2e1090>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651681421.955626,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGak9LzDJVu6fUCsuWZo0jIDH6K7LhfHOAAAgD8AAIA/zUT/O4+2NboGtb87UntROMmpiDhAU4S6AACAPwAAgD8Na+m9FC6duEUTfbyH/K42b9XCuwqkIrYAAIA/AAAAAE1rBD0pmCS6K9KjOiKdXjVJadw6aoe8uQAAgD8AAIA/s8GUvXuCgbo6hJm5gFm1NQejI7p1rq84AACAPwAAgD9T/Tq+bPiSu26onjug8go5l+YKPcjL7bkAAIA/AACAP0CDsT24RrI6dPo7vufRajygj3u7+3J2vQAAAAAAAAAAgKvQPeHAhLrITIe8w/ketsk9iLpKGow1AACAPwAAgD9NQW09CkdguSodLbz288I8ezYEOpFXnroAAIA/AACAP2ZSADzsedy5Yc2GOyLrGzgtXNw6TyiktwAAgD8AAIA/rbPUvsPDPT1VtnG9YMaovhYoqDxEoQs9AAAAAAAAAACzHrq9w/1hujZUIbs0QN82QgBpuzQzOjoAAIA/AACAPwBEp7wKxwS5ouhdPB0IhjuOrI074IhqPAAAAAAAAIA/zRi0u/Y0ULqmX5W6D6OltX72sTl6Oa45AACAPwAAgD9+ZYO+1A3XPde5kL3DtZG+Jkz1vVPAKz0AAAAAAAAAAM1JvTyPbm66cqZLucxbpzXnlLe5WMlnOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvjPaqiRURcCUhpRSlIwBbJRLp4wBdJRHQIy3kOEug6F1fZQoaAZoCWgPQwjMKQExCUMzQJSGlFKUaBVLuWgWR0CMu9BXS0BwdX2UKGgGaAloD0MIDk+vlGVUYkCUhpRSlGgVTegDaBZHQIy8m6RQrMF1fZQoaAZoCWgPQwhstBzoobZiQJSGlFKUaBVN6ANoFkdAjMAcAR02cnV9lChoBmgJaA9DCIIeatswajxAlIaUUpRoFUu9aBZHQIzFLfm9xqB1fZQoaAZoCWgPQwjCwd7EkG5eQJSGlFKUaBVN6ANoFkdAjMYdL6DXe3V9lChoBmgJaA9DCGnJ42n5o2BAlIaUUpRoFU3oA2gWR0CMyIGhVU++dX2UKGgGaAloD0MIiuYBLPKjXECUhpRSlGgVTegDaBZHQIzIiMFUyYZ1fZQoaAZoCWgPQwgnT1lN13s+wJSGlFKUaBVLzmgWR0CM0vlnRLK3dX2UKGgGaAloD0MIxVVl3xUFPMCUhpRSlGgVS5loFkdAjNXj3VTaTXV9lChoBmgJaA9DCBDn4QSmfV1AlIaUUpRoFU3oA2gWR0CM2Xr8iwB6dX2UKGgGaAloD0MIu+zXne7EJMCUhpRSlGgVS65oFkdAjNruW8h9s3V9lChoBmgJaA9DCK01lNqLwERAlIaUUpRoFUvJaBZHQIzrSFmFrVR1fZQoaAZoCWgPQwgkJT0Mrc9bQJSGlFKUaBVN6ANoFkdAjTwFzEJjUnV9lChoBmgJaA9DCL0Yyon2fWFAlIaUUpRoFU3oA2gWR0CNSbChN/OMdX2UKGgGaAloD0MIjC/a4wUPYUCUhpRSlGgVTegDaBZHQI1R+vMbFS91fZQoaAZoCWgPQwhLOsrB7PdkQJSGlFKUaBVN6ANoFkdAjVgGo73fynV9lChoBmgJaA9DCFaCxeHM6mJAlIaUUpRoFU3oA2gWR0CNYdxtpEhJdX2UKGgGaAloD0MI4q5eRUaLYUCUhpRSlGgVTegDaBZHQI1vsHMUypJ1fZQoaAZoCWgPQwgQrRVtjv1DQJSGlFKUaBVLxmgWR0CNcHFCswL3dX2UKGgGaAloD0MIC3va4a8iU0CUhpRSlGgVTegDaBZHQI1ys7nxJ/Z1fZQoaAZoCWgPQwiPcFrwouFGwJSGlFKUaBVLsmgWR0CNc4qQRwqBdX2UKGgGaAloD0MImgrxSLx+ZECUhpRSlGgVTegDaBZHQI142JYT0xx1fZQoaAZoCWgPQwi62or9ZYdiQJSGlFKUaBVN6ANoFkdAjX19/jKgZnV9lChoBmgJaA9DCNVA8zl3dUFAlIaUUpRoFUvAaBZHQI1/BH5Jsft1fZQoaAZoCWgPQwgRxk/j3sFhQJSGlFKUaBVN6ANoFkdAjYHu7QLNOnV9lChoBmgJaA9DCNbiUwAMt2BAlIaUUpRoFU3oA2gWR0CNh6JtSAH3dX2UKGgGaAloD0MIVYSbjKoaYUCUhpRSlGgVTegDaBZHQI2LWVHFxXJ1fZQoaAZoCWgPQwhkraHUXkTpv5SGlFKUaBVLmmgWR0CNlOwu/UONdX2UKGgGaAloD0MII4Wy8PVlEcCUhpRSlGgVS8ZoFkdAjZfMP8Q7LnV9lChoBmgJaA9DCDAPmfIhxVpAlIaUUpRoFU3oA2gWR0CNm6e5nUUgdX2UKGgGaAloD0MI83aE0wITYkCUhpRSlGgVTegDaBZHQI2fQUvf0mN1fZQoaAZoCWgPQwh3SDFAootEQJSGlFKUaBVLwmgWR0CNn56fra/RdX2UKGgGaAloD0MIUz2Zf/SJWkCUhpRSlGgVTegDaBZHQI2gvM2WIGh1fZQoaAZoCWgPQwjeV+VC5QZcQJSGlFKUaBVN6ANoFkdAjbBtcfNiY3V9lChoBmgJaA9DCGLAkqtYwkdAlIaUUpRoFUvPaBZHQI2w5lpXZGt1fZQoaAZoCWgPQwi5jQbwFopMQJSGlFKUaBVLy2gWR0CNuAgQHzH0dX2UKGgGaAloD0MIEVZjCWtzLkCUhpRSlGgVS9RoFkdAjbjBnJ1aGHV9lChoBmgJaA9DCNPAj2rYul1AlIaUUpRoFU3oA2gWR0CN/UiA2AG0dX2UKGgGaAloD0MIYRdFD3wMG0CUhpRSlGgVS69oFkdAjf9TQE6kqXV9lChoBmgJaA9DCNYCe0ykLGdAlIaUUpRoFU3oA2gWR0COCNuJDVpcdX2UKGgGaAloD0MIMe9xpgmlQ8CUhpRSlGgVS3poFkdAjhBbG3nZCnV9lChoBmgJaA9DCF8Lem8MoUtAlIaUUpRoFU0SAWgWR0COJel67dzodX2UKGgGaAloD0MIniees4VWZUCUhpRSlGgVTegDaBZHQI4vNXq7iAF1fZQoaAZoCWgPQwiPbRlwFmNmQJSGlFKUaBVN6ANoFkdAjjAGDtgKGHV9lChoBmgJaA9DCGAF+G5zzGNAlIaUUpRoFU3oA2gWR0COMiB/7SApdX2UKGgGaAloD0MIeAlOfSDWZkCUhpRSlGgVTegDaBZHQI4y6VrylN11fZQoaAZoCWgPQwgh5Lz/j6NgQJSGlFKUaBVN6ANoFkdAjjenC4z7/HV9lChoBmgJaA9DCFad1QJ7K2NAlIaUUpRoFU3oA2gWR0COO7ucc2itdX2UKGgGaAloD0MIt5kK8UicQECUhpRSlGgVS7ZoFkdAjkhKDkELY3V9lChoBmgJaA9DCLpnXaPlBl5AlIaUUpRoFU3oA2gWR0COSlz90ihWdX2UKGgGaAloD0MIH6D7cmY8UkCUhpRSlGgVS+5oFkdAjlIZD7ZWaXV9lChoBmgJaA9DCMmQY+sZHWNAlIaUUpRoFU3oA2gWR0COVXAP/aQFdX2UKGgGaAloD0MIu0IfLOMGYECUhpRSlGgVTegDaBZHQI5cKR4hUzd1fZQoaAZoCWgPQwg09iUbD5RbQJSGlFKUaBVN6ANoFkdAjmG78ejmCHV9lChoBmgJaA9DCKmI00m2WhlAlIaUUpRoFUvGaBZHQI5i7F0gbId1fZQoaAZoCWgPQwgtza0Q1lBkQJSGlFKUaBVN6ANoFkdAjnI80tRNy3V9lChoBmgJaA9DCKEUrdwLQDrAlIaUUpRoFUuzaBZHQI5y6Rr8BMl1fZQoaAZoCWgPQwg7cTleAfdjQJSGlFKUaBVN6ANoFkdAjnpXJ5mh/XV9lChoBmgJaA9DCE8Hsp5au1tAlIaUUpRoFU3oA2gWR0COexpBX0XhdX2UKGgGaAloD0MIL8TqjzCUJ0CUhpRSlGgVS8VoFkdAjnwPtD2JznV9lChoBmgJaA9DCMdjBirjzyxAlIaUUpRoFUvmaBZHQI5+t/tpmEp1fZQoaAZoCWgPQwihgy7h0O86QJSGlFKUaBVL12gWR0COyTZoPCl8dX2UKGgGaAloD0MIxT2WPnTAZUCUhpRSlGgVTegDaBZHQI7NGgte2NN1fZQoaAZoCWgPQwj3rdaJy/EnwJSGlFKUaBVLm2gWR0COzdqoIfKZdX2UKGgGaAloD0MI3jmUoSpsXkCUhpRSlGgVTegDaBZHQI7UEB2fTTh1fZQoaAZoCWgPQwj7rDJTWu8TQJSGlFKUaBVLrGgWR0CO4KdQO4G2dX2UKGgGaAloD0MIF35wPvVoY0CUhpRSlGgVTegDaBZHQI7nfS8an751fZQoaAZoCWgPQwjToGgewMtkQJSGlFKUaBVN6ANoFkdAju+IUSIxg3V9lChoBmgJaA9DCO7uAbqv/mBAlIaUUpRoFU3oA2gWR0CO8xCojv/jdX2UKGgGaAloD0MIryXkg55xXkCUhpRSlGgVTegDaBZHQI7397BwdbR1fZQoaAZoCWgPQwg25J8ZxIhnQJSGlFKUaBVN6ANoFkdAjvxGcOLBK3V9lChoBmgJaA9DCAfSxaaVAv2/lIaUUpRoFUvhaBZHQI8GiJKraM91fZQoaAZoCWgPQwhkr3d/vDlTQJSGlFKUaBVN6ANoFkdAjwr4VqN6xHV9lChoBmgJaA9DCFT/IJIh5xFAlIaUUpRoFUvNaBZHQI8LlCVrylN1fZQoaAZoCWgPQwjQDU3ZaWJgQJSGlFKUaBVN6ANoFkdAjxKCmMwUQHV9lChoBmgJaA9DCCLGa17Vt11AlIaUUpRoFU3oA2gWR0CPFcS13MY/dX2UKGgGaAloD0MIqUpbXOOGY0CUhpRSlGgVTegDaBZHQI82apNsWO91fZQoaAZoCWgPQwi7SKEsfLNlQJSGlFKUaBVN6ANoFkdAj0DdS2phnnV9lChoBmgJaA9DCJxqLcxCCUlAlIaUUpRoFU3oA2gWR0CPQeBJ7LMcdX2UKGgGaAloD0MIkE3yI/5nYkCUhpRSlGgVTegDaBZHQI9DB8hLXcx1fZQoaAZoCWgPQwi9cVKY99peQJSGlFKUaBVN6ANoFkdAj5U1R+BpYnV9lChoBmgJaA9DCPGAsilXmFFAlIaUUpRoFUuxaBZHQI+WAb+98JF1fZQoaAZoCWgPQwhTWn9LgBBkQJSGlFKUaBVN6ANoFkdAj5Y3jMmnfnV9lChoBmgJaA9DCCQofoy5alxAlIaUUpRoFU3oA2gWR0CPnOwztTkydX2UKGgGaAloD0MITu0MU1uJWkCUhpRSlGgVTegDaBZHQI+p7ftQbdd1fZQoaAZoCWgPQwjM64hDNrBCQJSGlFKUaBVLwmgWR0CPse9oN/e+dX2UKGgGaAloD0MI/b5/8+LEQUCUhpRSlGgVS8xoFkdAj7KGR3eN1nV9lChoBmgJaA9DCAKDpE8romFAlIaUUpRoFU3oA2gWR0CPvFtF8XvZdX2UKGgGaAloD0MIOgg6WtXNYUCUhpRSlGgVTegDaBZHQI/BnoPkJa91fZQoaAZoCWgPQwjPaRZo91liQJSGlFKUaBVN6ANoFkdAj8YEvK2a2HV9lChoBmgJaA9DCEPmyqDao2ZAlIaUUpRoFU3oA2gWR0CP0IjQAuIzdX2UKGgGaAloD0MInGuYofFaR0CUhpRSlGgVS95oFkdAj9IH8CPp6nV9lChoBmgJaA9DCDlhwmhWL1tAlIaUUpRoFU3oA2gWR0CP1NrQgLZ0dX2UKGgGaAloD0MIBabTug0eRkCUhpRSlGgVTegDaBZHQI/Valk6Lfl1fZQoaAZoCWgPQwhLzLOS1iBjQJSGlFKUaBVN6ANoFkdAj9vq+rU9ZHV9lChoBmgJaA9DCGjon+DiemFAlIaUUpRoFU3oA2gWR0CP3txusLfDdX2UKGgGaAloD0MIl445z1jxYECUhpRSlGgVTegDaBZHQI/+XJq7Acl1fZQoaAZoCWgPQwgm/ijqTCVhQJSGlFKUaBVN6ANoFkdAkAQtECvHLnV9lChoBmgJaA9DCH8UdeYeJ2ZAlIaUUpRoFU3oA2gWR0CQBKhJRO1wdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cf16a0181cf09d8ff8035d83e2e5f40608485a1aa4d616e019f3cbd53f5ee55
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:286d8044cbe1c996e5849ab32133c0bb726234755f02fd35ed49ad184ded9b50
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c99b0a0696545fb7cc646a398704d3fd1e90367764bd126136319252b820303f
|
3 |
+
size 211215
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 136.2505085072256, "std_reward": 87.62208416174104, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T16:45:53.568576"}
|