Upload deepseek_tflite.ipynb
Browse filesUpdate colab which works with generic signatures.
- deepseek_tflite.ipynb +130 -55
deepseek_tflite.ipynb
CHANGED
@@ -26,13 +26,27 @@
|
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
"source": [
|
29 |
-
"!pip install ai-edge-litert
|
30 |
],
|
31 |
"metadata": {
|
32 |
-
"id": "43tAeO0AZ7zp"
|
|
|
|
|
|
|
|
|
33 |
},
|
34 |
-
"execution_count":
|
35 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
},
|
37 |
{
|
38 |
"cell_type": "code",
|
@@ -46,7 +60,7 @@
|
|
46 |
"metadata": {
|
47 |
"id": "i6PMkMVBPr1p"
|
48 |
},
|
49 |
-
"execution_count":
|
50 |
"outputs": []
|
51 |
},
|
52 |
{
|
@@ -68,7 +82,7 @@
|
|
68 |
"metadata": {
|
69 |
"id": "3t47HAG2tvc3"
|
70 |
},
|
71 |
-
"execution_count":
|
72 |
"outputs": []
|
73 |
},
|
74 |
{
|
@@ -93,7 +107,7 @@
|
|
93 |
"metadata": {
|
94 |
"id": "Rvdn3EIZhaQn"
|
95 |
},
|
96 |
-
"execution_count":
|
97 |
"outputs": []
|
98 |
},
|
99 |
{
|
@@ -108,6 +122,7 @@
|
|
108 |
{
|
109 |
"cell_type": "code",
|
110 |
"source": [
|
|
|
111 |
"\n",
|
112 |
"class LiteRTLlmPipeline:\n",
|
113 |
"\n",
|
@@ -133,7 +148,11 @@
|
|
133 |
" Args:\n",
|
134 |
" num_input_tokens: The number of input tokens.\n",
|
135 |
" \"\"\"\n",
|
|
|
|
|
136 |
"\n",
|
|
|
|
|
137 |
" self._prefill_runner = self._get_prefill_runner(num_input_tokens)\n",
|
138 |
" # input_token_shape has shape (batch, max_seq_len)\n",
|
139 |
" input_token_shape = self._prefill_runner.get_input_details()[\"tokens\"][\n",
|
@@ -203,62 +222,127 @@
|
|
203 |
" )\n",
|
204 |
" return self._interpreter.get_signature_runner(best_signature)\n",
|
205 |
"\n",
|
206 |
-
" def
|
207 |
-
"
|
|
|
|
|
208 |
"\n",
|
209 |
-
"
|
210 |
-
"
|
211 |
-
" token_ids = self._tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True)\n",
|
212 |
-
" # Initialize the prefill runner with the suitable input size.\n",
|
213 |
-
" self._init_prefill_runner(len(token_ids))\n",
|
214 |
"\n",
|
215 |
-
"
|
216 |
-
"
|
217 |
-
"
|
|
|
|
|
|
|
|
|
|
|
218 |
"\n",
|
|
|
219 |
" input_token_ids = [0] * self._max_seq_len\n",
|
220 |
-
" input_token_ids[:
|
221 |
-
"
|
222 |
-
"
|
223 |
-
"
|
224 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
" })\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
" decode_text = []\n",
|
227 |
-
"
|
228 |
-
"
|
229 |
-
" for
|
230 |
-
"
|
231 |
-
"
|
232 |
-
"
|
233 |
-
"
|
234 |
-
"
|
235 |
-
" logits =
|
236 |
-
"
|
237 |
-
"
|
238 |
-
" print('Running decode')\n",
|
239 |
-
"\n",
|
240 |
-
" # Decode text output.\n",
|
241 |
" next_token = self._greedy_sampler(logits)\n",
|
242 |
" if next_token == self._tokenizer.eos_token_id:\n",
|
243 |
" break\n",
|
244 |
" decode_text.append(self._tokenizer.decode(next_token, skip_special_tokens=False))\n",
|
245 |
" print(decode_text[-1], end='', flush=True)\n",
|
246 |
-
" #
|
247 |
-
"
|
248 |
-
"
|
249 |
-
"
|
250 |
-
"
|
251 |
-
"
|
|
|
|
|
252 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
253 |
"\n",
|
|
|
|
|
|
|
|
|
254 |
"\n",
|
255 |
-
" print()
|
256 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
],
|
258 |
"metadata": {
|
259 |
"id": "UBSGrHrM4ANm"
|
260 |
},
|
261 |
-
"execution_count":
|
262 |
"outputs": []
|
263 |
},
|
264 |
{
|
@@ -279,7 +363,7 @@
|
|
279 |
"metadata": {
|
280 |
"id": "AZhlDQWg61AL"
|
281 |
},
|
282 |
-
"execution_count":
|
283 |
"outputs": []
|
284 |
},
|
285 |
{
|
@@ -293,15 +377,6 @@
|
|
293 |
},
|
294 |
"execution_count": null,
|
295 |
"outputs": []
|
296 |
-
},
|
297 |
-
{
|
298 |
-
"cell_type": "code",
|
299 |
-
"source": [],
|
300 |
-
"metadata": {
|
301 |
-
"id": "GNzDBxDFEuAJ"
|
302 |
-
},
|
303 |
-
"execution_count": null,
|
304 |
-
"outputs": []
|
305 |
}
|
306 |
]
|
307 |
}
|
|
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
"source": [
|
29 |
+
"!pip install ai-edge-litert"
|
30 |
],
|
31 |
"metadata": {
|
32 |
+
"id": "43tAeO0AZ7zp",
|
33 |
+
"colab": {
|
34 |
+
"base_uri": "https://localhost:8080/"
|
35 |
+
},
|
36 |
+
"outputId": "7ce4d1ef-7d6b-4855-b73b-22482e3c693d"
|
37 |
},
|
38 |
+
"execution_count": 1,
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"output_type": "stream",
|
42 |
+
"name": "stdout",
|
43 |
+
"text": [
|
44 |
+
"Requirement already satisfied: ai-edge-litert in /usr/local/lib/python3.11/dist-packages (1.1.2)\n",
|
45 |
+
"Requirement already satisfied: flatbuffers in /usr/local/lib/python3.11/dist-packages (from ai-edge-litert) (25.2.10)\n",
|
46 |
+
"Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/dist-packages (from ai-edge-litert) (1.26.4)\n"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
]
|
50 |
},
|
51 |
{
|
52 |
"cell_type": "code",
|
|
|
60 |
"metadata": {
|
61 |
"id": "i6PMkMVBPr1p"
|
62 |
},
|
63 |
+
"execution_count": 2,
|
64 |
"outputs": []
|
65 |
},
|
66 |
{
|
|
|
82 |
"metadata": {
|
83 |
"id": "3t47HAG2tvc3"
|
84 |
},
|
85 |
+
"execution_count": 3,
|
86 |
"outputs": []
|
87 |
},
|
88 |
{
|
|
|
107 |
"metadata": {
|
108 |
"id": "Rvdn3EIZhaQn"
|
109 |
},
|
110 |
+
"execution_count": 4,
|
111 |
"outputs": []
|
112 |
},
|
113 |
{
|
|
|
122 |
{
|
123 |
"cell_type": "code",
|
124 |
"source": [
|
125 |
+
"\n",
|
126 |
"\n",
|
127 |
"class LiteRTLlmPipeline:\n",
|
128 |
"\n",
|
|
|
148 |
" Args:\n",
|
149 |
" num_input_tokens: The number of input tokens.\n",
|
150 |
" \"\"\"\n",
|
151 |
+
" if not self._interpreter:\n",
|
152 |
+
" raise ValueError(\"Interpreter is not initialized.\")\n",
|
153 |
"\n",
|
154 |
+
" # Prefill runner related variables will be initialized in `predict_text` and\n",
|
155 |
+
" # `compute_log_likelihood`.\n",
|
156 |
" self._prefill_runner = self._get_prefill_runner(num_input_tokens)\n",
|
157 |
" # input_token_shape has shape (batch, max_seq_len)\n",
|
158 |
" input_token_shape = self._prefill_runner.get_input_details()[\"tokens\"][\n",
|
|
|
222 |
" )\n",
|
223 |
" return self._interpreter.get_signature_runner(best_signature)\n",
|
224 |
"\n",
|
225 |
+
" def _run_prefill(\n",
|
226 |
+
" self, prefill_token_ids: Sequence[int],\n",
|
227 |
+
" ) -> dict[str, np.ndarray]:\n",
|
228 |
+
" \"\"\"Runs prefill and returns the kv cache.\n",
|
229 |
"\n",
|
230 |
+
" Args:\n",
|
231 |
+
" prefill_token_ids: The token ids of the prefill input.\n",
|
|
|
|
|
|
|
232 |
"\n",
|
233 |
+
" Returns:\n",
|
234 |
+
" The updated kv cache.\n",
|
235 |
+
" \"\"\"\n",
|
236 |
+
" if not self._prefill_runner:\n",
|
237 |
+
" raise ValueError(\"Prefill runner is not initialized.\")\n",
|
238 |
+
" prefill_token_length = len(prefill_token_ids)\n",
|
239 |
+
" if prefill_token_length == 0:\n",
|
240 |
+
" return self._init_kv_cache()\n",
|
241 |
"\n",
|
242 |
+
" # Prepare the input to be [1, max_seq_len].\n",
|
243 |
" input_token_ids = [0] * self._max_seq_len\n",
|
244 |
+
" input_token_ids[:prefill_token_length] = prefill_token_ids\n",
|
245 |
+
" input_token_ids = np.asarray(input_token_ids, dtype=np.int32)\n",
|
246 |
+
" input_token_ids = np.expand_dims(input_token_ids, axis=0)\n",
|
247 |
+
"\n",
|
248 |
+
" # Prepare the input position to be [max_seq_len].\n",
|
249 |
+
" input_pos = [0] * self._max_seq_len\n",
|
250 |
+
" input_pos[:prefill_token_length] = range(prefill_token_length)\n",
|
251 |
+
" input_pos = np.asarray(input_pos, dtype=np.int32)\n",
|
252 |
+
"\n",
|
253 |
+
" # Initialize kv cache.\n",
|
254 |
+
" prefill_inputs = self._init_kv_cache()\n",
|
255 |
+
" prefill_inputs.update({\n",
|
256 |
+
" \"tokens\": input_token_ids,\n",
|
257 |
+
" \"input_pos\": input_pos,\n",
|
258 |
" })\n",
|
259 |
+
" prefill_outputs = self._prefill_runner(**prefill_inputs)\n",
|
260 |
+
" if \"logits\" in prefill_outputs:\n",
|
261 |
+
" # Prefill outputs includes logits and kv cache. We only output kv cache.\n",
|
262 |
+
" prefill_outputs.pop(\"logits\")\n",
|
263 |
+
"\n",
|
264 |
+
" return prefill_outputs\n",
|
265 |
+
"\n",
|
266 |
+
" def _greedy_sampler(self, logits: np.ndarray) -> int:\n",
|
267 |
+
" return int(np.argmax(logits))\n",
|
268 |
+
"\n",
|
269 |
+
"\n",
|
270 |
+
" def _run_decode(\n",
|
271 |
+
" self,\n",
|
272 |
+
" start_pos: int,\n",
|
273 |
+
" start_token_id: int,\n",
|
274 |
+
" kv_cache: dict[str, np.ndarray],\n",
|
275 |
+
" max_decode_steps: int,\n",
|
276 |
+
" ) -> str:\n",
|
277 |
+
" \"\"\"Runs decode and outputs the token ids from greedy sampler.\n",
|
278 |
+
"\n",
|
279 |
+
" Args:\n",
|
280 |
+
" start_pos: The position of the first token of the decode input.\n",
|
281 |
+
" start_token_id: The token id of the first token of the decode input.\n",
|
282 |
+
" kv_cache: The kv cache from the prefill.\n",
|
283 |
+
" max_decode_steps: The max decode steps.\n",
|
284 |
+
"\n",
|
285 |
+
" Returns:\n",
|
286 |
+
" The token ids from the greedy sampler.\n",
|
287 |
+
" \"\"\"\n",
|
288 |
+
" next_pos = start_pos\n",
|
289 |
+
" next_token = start_token_id\n",
|
290 |
" decode_text = []\n",
|
291 |
+
" decode_inputs = kv_cache\n",
|
292 |
+
"\n",
|
293 |
+
" for _ in range(max_decode_steps):\n",
|
294 |
+
" decode_inputs.update({\n",
|
295 |
+
" \"tokens\": np.array([[next_token]], dtype=np.int32),\n",
|
296 |
+
" \"input_pos\": np.array([next_pos], dtype=np.int32),\n",
|
297 |
+
" })\n",
|
298 |
+
" decode_outputs = self._decode_runner(**decode_inputs)\n",
|
299 |
+
" # Output logits has shape (batch=1, 1, vocab_size). We only take the first\n",
|
300 |
+
" # element.\n",
|
301 |
+
" logits = decode_outputs.pop(\"logits\")[0][0]\n",
|
|
|
|
|
|
|
302 |
" next_token = self._greedy_sampler(logits)\n",
|
303 |
" if next_token == self._tokenizer.eos_token_id:\n",
|
304 |
" break\n",
|
305 |
" decode_text.append(self._tokenizer.decode(next_token, skip_special_tokens=False))\n",
|
306 |
" print(decode_text[-1], end='', flush=True)\n",
|
307 |
+
" # Decode outputs includes logits and kv cache. We already poped out\n",
|
308 |
+
" # logits, so the rest is kv cache. We pass the updated kv cache as input\n",
|
309 |
+
" # to the next decode step.\n",
|
310 |
+
" decode_inputs = decode_outputs\n",
|
311 |
+
" next_pos += 1\n",
|
312 |
+
"\n",
|
313 |
+
" print() # print a new line at the end.\n",
|
314 |
+
" return ''.join(decode_text)\n",
|
315 |
"\n",
|
316 |
+
" def generate(self, prompt: str, max_decode_steps: int | None = None) -> str:\n",
|
317 |
+
" messages=[{ 'role': 'user', 'content': prompt}]\n",
|
318 |
+
" token_ids = self._tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True)\n",
|
319 |
+
" # Initialize the prefill runner with the suitable input size.\n",
|
320 |
+
" self._init_prefill_runner(len(token_ids))\n",
|
321 |
"\n",
|
322 |
+
" # Run prefill.\n",
|
323 |
+
" # Prefill up to the seond to the last token of the prompt, because the last\n",
|
324 |
+
" # token of the prompt will be used to bootstrap decode.\n",
|
325 |
+
" prefill_token_length = len(token_ids) - 1\n",
|
326 |
"\n",
|
327 |
+
" print('Running prefill')\n",
|
328 |
+
" kv_cache = self._run_prefill(token_ids[:prefill_token_length])\n",
|
329 |
+
" # Run decode.\n",
|
330 |
+
" print('Running decode')\n",
|
331 |
+
" actual_max_decode_steps = self._max_kv_cache_seq_len - prefill_token_length - 1\n",
|
332 |
+
" if max_decode_steps is not None:\n",
|
333 |
+
" actual_max_decode_steps = min(actual_max_decode_steps, max_decode_steps)\n",
|
334 |
+
" decode_text = self._run_decode(\n",
|
335 |
+
" prefill_token_length,\n",
|
336 |
+
" token_ids[prefill_token_length],\n",
|
337 |
+
" kv_cache,\n",
|
338 |
+
" actual_max_decode_steps,\n",
|
339 |
+
" )\n",
|
340 |
+
" return decode_text"
|
341 |
],
|
342 |
"metadata": {
|
343 |
"id": "UBSGrHrM4ANm"
|
344 |
},
|
345 |
+
"execution_count": 7,
|
346 |
"outputs": []
|
347 |
},
|
348 |
{
|
|
|
363 |
"metadata": {
|
364 |
"id": "AZhlDQWg61AL"
|
365 |
},
|
366 |
+
"execution_count": 8,
|
367 |
"outputs": []
|
368 |
},
|
369 |
{
|
|
|
377 |
},
|
378 |
"execution_count": null,
|
379 |
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
}
|
381 |
]
|
382 |
}
|