File size: 5,320 Bytes
9f47354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
seed: 0
output_dir: output/05_05_2024_20_21_54_727273
domains: austin_sailor_dataset_converted_externally_to_rlds, stanford_hydra_dataset_converted_externally_to_rlds,
austin_buds_dataset_converted_externally_to_rlds, austin_sirius_dataset_converted_externally_to_rlds,
berkeley_mvp_converted_externally_to_rlds, berkeley_rpt_converted_externally_to_rlds,
iamlab_cmu_pickup_insert_converted_externally_to_rlds, utaustin_mutex, imperialcollege_sawyer_wrist_cam,
stanford_mask_vit_converted_externally_to_rlds, language_table, kuka, bc_z, robo_net,
dlr_sara_pour_converted_externally_to_rlds, stanford_robocook_converted_externally_to_rlds,
cmu_play_fusion, bridge, furniture_bench_dataset_converted_externally_to_rlds, ucsd_pick_and_place_dataset_converted_externally_to_rlds,
usc_cloth_sim_converted_externally_to_rlds, stanford_kuka_multimodal_dataset_converted_externally_to_rlds,
roboturk, kaist_nonprehensile_converted_externally_to_rlds, asu_table_top_converted_externally_to_rlds,
utokyo_xarm_pick_and_place_converted_externally_to_rlds, berkeley_cable_routing,
droid, uiuc_d3field, robo_set, qut_dexterous_manpulation, nyu_door_opening_surprising_effectiveness,
nyu_franka_play_dataset_converted_externally_to_rlds, mimic_play, maniskill_dataset_converted_externally_to_rlds,
columbia_cairlab_pusht_real, conq_hose_manipulation, dlr_edan_shared_control_converted_externally_to_rlds,
berkeley_gnm_sac_son, berkeley_autolab_ur5, aloha_mobile, agent_aware_affordances
log_dir: output/05_05_2024_20_21_54_727273
debug_distributed: false
wb_tag: default
wb_cont_run: 2nxmlp81
log_interval: 10
script_name: run_resnet_30dataset_traj100000_embed_256_batch2048_800k_language
save_wb_checkpoint: true
slurm_job_id: '27155760'
effective_total_epochs: 100
effective_batch_size: 256
epoch_size: 10
total_num_traj: 0
total_num_sample: 0
rank: 0
gpu: 0
task_per_gpu: 1
world_size: 64
debug_submitit: false
ngpus: 8
nodes: 8
timeout: 4320
job_dir: logs/
partition: learnlab
use_volta32: true
comment: ''
resume: logs/
dist_url: file:///checkpoint/xinleic/experiments/43124ff352a546a8b51d5fb4234b51d8_init
dist_on_itp: false
local_rank: 1
distributed: true
dist_backend: nccl
dset_w_temperature: 2.0
dataset_shuffle: true
dataset_groups: ''
nodelist: learnlab,learnfair,scavenge
fsdp: false
count_flops: false
accumuate_gradient_steps: 1
trunk_acc_gradient_step: 1
submitit_autoresume: true
customized_dataset_mixture_file: ''
trunk_separate_opt: false
dataset:
_target_: hpt_pretrain.dataset.traj_dataset.TrajDataset
horizon: 5
val_ratio: 0.1
pad_after: 0
precompute_feat: true
image_encoder: resnet
episode_cnt: 100000
step_cnt: 10000000
data_augmentation: false
use_disk: true
pad_before: 0
data_ratio: 1
action_horizon: 8
observation_horizon: 4
dataset_postfix: _traj100000
dataset_encoder_postfix: _resnet
use_multiview: false
normalize_state: true
use_heldout_dataset: true
heldout_dataset: false
regenerate: false
continue_generate: false
network:
_target_: hpt_pretrain.models.policy.Policy
embed_dim: 256
num_blocks: 16
num_heads: 8
use_modality_embedding: true
use_domain_embedding: false
token_postprocessing: mean
weight_init_style: pytorch
drop_path: 0.1
mae_loss_scale: 0.0
masked_autoencoding: false
action_horizon: ${dataset.action_horizon}
stem:
modalities:
- image
- state
- language
modality_embed_dim: 256
normalize_state: ${dataset.normalize_state}
state_embedding_dim: 1
image_encoder: ${dataset.image_encoder}
crossattn_dim_head: 64
crossattn_heads: 8
crossattn_modality_dropout: 0.1
observation_horizon: ${dataset.observation_horizon}
random_horizon_masking: true
add_pos_embedding_to_state: false
num_blocks: 1
crossattn_latent:
image: 16
state: 16
language: 8
image:
_target_: hpt_pretrain.models.policy_stem.MLP
input_dim: 512
output_dim: 256
widths:
- 128
num_of_copy: 1
state:
_target_: hpt_pretrain.models.policy_stem.MLP
input_dim: 8
output_dim: 256
widths:
- 128
language:
_target_: hpt_pretrain.models.policy_stem.MLP
input_dim: 768
output_dim: ${network.embed_dim}
widths:
- 128
head:
_target_: hpt_pretrain.models.policy_head.MLP
input_dim: 256
tanh_end: true
output_dim: 48
dropout: true
widths:
- 256
- 128
dataloader:
batch_size: 32
num_workers: 1
pin_memory: false
persistent_workers: false
drop_last: true
val_dataloader:
num_workers: 1
pin_memory: false
persistent_workers: false
ddp_dataloader:
num_workers: 8
pin_memory: false
persistent_workers: false
drop_last: false
prefetch_factor: 6
ddp_val_dataloader:
num_workers: 8
pin_memory: false
persistent_workers: false
drop_last: false
prefetch_factor: 2
optimizer:
_target_: torch.optim.AdamW
lr: 0.001
eps: 1.0e-06
weight_decay: 0.05
optimizer_misc:
nontrunk_lr_scale: 0.5
warmup_lr:
lr: 1.0e-10
step: 1000
train:
total_epochs: 30000
total_iters: 800000
epoch_iters: 1000
validation_iters: 100
use_accumulation: false
pretrained_dir: '05_05_2024_20_21_54_727273'
max_validation_size: 10
load_pretrain_trunk_only: false
freeze_trunk: false
lr_scheduler:
_target_: torch.optim.lr_scheduler.CosineAnnealingLR
T_max: 800000
eta_min: 1.0e-06
|