seed: 0 output_dir: output/08_04_2024_18_13_30_2327515 domains: austin_sailor_dataset_converted_externally_to_rlds, stanford_hydra_dataset_converted_externally_to_rlds, austin_buds_dataset_converted_externally_to_rlds, austin_sirius_dataset_converted_externally_to_rlds, berkeley_mvp_converted_externally_to_rlds, berkeley_rpt_converted_externally_to_rlds, iamlab_cmu_pickup_insert_converted_externally_to_rlds, utaustin_mutex, imperialcollege_sawyer_wrist_cam, stanford_mask_vit_converted_externally_to_rlds, language_table, kuka, bc_z, robo_net, dlr_sara_pour_converted_externally_to_rlds, stanford_robocook_converted_externally_to_rlds, cmu_play_fusion, bridge, furniture_bench_dataset_converted_externally_to_rlds, ucsd_pick_and_place_dataset_converted_externally_to_rlds, usc_cloth_sim_converted_externally_to_rlds, stanford_kuka_multimodal_dataset_converted_externally_to_rlds, roboturk, kaist_nonprehensile_converted_externally_to_rlds, asu_table_top_converted_externally_to_rlds, utokyo_xarm_pick_and_place_converted_externally_to_rlds, berkeley_cable_routing log_dir: output/08_04_2024_18_13_30_2327515 debug_distributed: false wb_tag: default wb_cont_run: 24yg5gb8 log_interval: 10 script_name: run_resnet_30dataset_traj10000_embed256_batch2048 save_wb_checkpoint: true slurm_job_id: '26140239' effective_total_epochs: 100 effective_batch_size: 256 epoch_size: 10 total_num_traj: 0 total_num_sample: 0 rank: 0 gpu: 0 task_per_gpu: 1 world_size: 64 debug_submitit: false ngpus: 8 nodes: 8 timeout: 4320 job_dir: logs/ partition: learnlab use_volta32: true comment: '' resume: logs/ dist_url: file:///checkpoint/xinleic/experiments/0a3d948fc6f644428ef132eb4f3a0d15_init dist_on_itp: false local_rank: 1 distributed: true dist_backend: nccl dset_w_temperature: 2.0 dataset_shuffle: true dataset_groups: '' nodelist: learnlab,learnfair,scavenge fsdp: false dataset: _target_: hpt_pretrain.dataset.traj_dataset.TrajDataset horizon: 5 val_ratio: 0.1 pad_after: 0 precompute_feat: true image_encoder: resnet episode_cnt: 10000 step_cnt: 10000000 data_augmentation: false use_disk: true pad_before: 0 data_ratio: 1 action_horizon: 8 observation_horizon: 4 dataset_postfix: _traj100000 dataset_encoder_postfix: _resnet use_multiview: false normalize_state: true use_heldout_dataset: true heldout_dataset: false regenerate: false continue_generate: false network: _target_: hpt_pretrain.models.policy.Policy embed_dim: 256 num_blocks: 16 num_heads: 8 use_modality_embedding: true use_domain_embedding: false token_postprocessing: mean weight_init_style: pytorch drop_path: 0.1 mae_loss_scale: 0.0 masked_autoencoding: false stem: modalities: - image - state modality_embed_dim: 256 normalize_state: ${dataset.normalize_state} state_embedding_dim: 1 image_encoder: ${dataset.image_encoder} crossattn_dim_head: 64 crossattn_heads: 8 crossattn_modality_dropout: 0.1 observation_horizon: ${dataset.observation_horizon} random_horizon_masking: true add_pos_embedding_to_state: false num_blocks: 1 crossattn_latent: image: 16 state: 16 image: _target_: hpt_pretrain.models.policy_stem.MLP input_dim: 512 output_dim: 256 widths: - 128 num_of_copy: 1 state: _target_: hpt_pretrain.models.policy_stem.MLP input_dim: 7 output_dim: 256 widths: - 128 head: _target_: hpt_pretrain.models.policy_head.MLP input_dim: 256 tanh_end: true output_dim: 48 dropout: true widths: - 256 - 128 dataloader: batch_size: 32 num_workers: 1 pin_memory: false persistent_workers: false drop_last: true val_dataloader: num_workers: 1 pin_memory: false persistent_workers: false ddp_dataloader: num_workers: 16 pin_memory: false persistent_workers: false drop_last: false prefetch_factor: 2 ddp_val_dataloader: num_workers: 8 pin_memory: false persistent_workers: false drop_last: false prefetch_factor: 2 optimizer: _target_: torch.optim.AdamW lr: 0.001 eps: 1.0e-06 weight_decay: 0.05 optimizer_misc: nontrunk_lr_scale: 0.5 warmup_lr: lr: 1.0e-10 step: 1000 train: total_epochs: 3000 total_iters: 80000 epoch_iters: 1000 validation_iters: 100 use_accumulation: false pretrained_dir: '' max_validation_size: 10 accumulate_batch_step: 1 lr_scheduler: _target_: torch.optim.lr_scheduler.CosineAnnealingLR T_max: 80000 eta_min: 1.0e-06