File size: 4,460 Bytes
d9b8fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
seed: 0
output_dir: output/08_04_2024_18_13_30_2327515
domains: austin_sailor_dataset_converted_externally_to_rlds, stanford_hydra_dataset_converted_externally_to_rlds,
  austin_buds_dataset_converted_externally_to_rlds, austin_sirius_dataset_converted_externally_to_rlds,
  berkeley_mvp_converted_externally_to_rlds, berkeley_rpt_converted_externally_to_rlds,
  iamlab_cmu_pickup_insert_converted_externally_to_rlds, utaustin_mutex, imperialcollege_sawyer_wrist_cam,
  stanford_mask_vit_converted_externally_to_rlds, language_table, kuka, bc_z, robo_net,
  dlr_sara_pour_converted_externally_to_rlds, stanford_robocook_converted_externally_to_rlds,
  cmu_play_fusion, bridge, furniture_bench_dataset_converted_externally_to_rlds, ucsd_pick_and_place_dataset_converted_externally_to_rlds,
  usc_cloth_sim_converted_externally_to_rlds, stanford_kuka_multimodal_dataset_converted_externally_to_rlds,
  roboturk, kaist_nonprehensile_converted_externally_to_rlds, asu_table_top_converted_externally_to_rlds,
  utokyo_xarm_pick_and_place_converted_externally_to_rlds, berkeley_cable_routing
log_dir: output/08_04_2024_18_13_30_2327515
debug_distributed: false
wb_tag: default
wb_cont_run: 24yg5gb8
log_interval: 10
script_name: run_resnet_30dataset_traj10000_embed256_batch2048
save_wb_checkpoint: true
slurm_job_id: '26140239'
effective_total_epochs: 100
effective_batch_size: 256
epoch_size: 10
total_num_traj: 0
total_num_sample: 0
rank: 0
gpu: 0
task_per_gpu: 1
world_size: 64
debug_submitit: false
ngpus: 8
nodes: 8
timeout: 4320
job_dir: logs/
partition: learnlab
use_volta32: true
comment: ''
resume: logs/
dist_url: file:///checkpoint/xinleic/experiments/0a3d948fc6f644428ef132eb4f3a0d15_init
dist_on_itp: false
local_rank: 1
distributed: true
dist_backend: nccl
dset_w_temperature: 2.0
dataset_shuffle: true
dataset_groups: ''
nodelist: learnlab,learnfair,scavenge
fsdp: false
dataset:
  _target_: hpt_pretrain.dataset.traj_dataset.TrajDataset
  horizon: 5
  val_ratio: 0.1
  pad_after: 0
  precompute_feat: true
  image_encoder: resnet
  episode_cnt: 10000
  step_cnt: 10000000
  data_augmentation: false
  use_disk: true
  pad_before: 0
  data_ratio: 1
  action_horizon: 8
  observation_horizon: 4
  dataset_postfix: _traj100000
  dataset_encoder_postfix: _resnet
  use_multiview: false
  normalize_state: true
  use_heldout_dataset: true
  heldout_dataset: false
  regenerate: false
  continue_generate: false
network:
  _target_: hpt_pretrain.models.policy.Policy
  embed_dim: 256
  num_blocks: 16
  num_heads: 8
  use_modality_embedding: true
  use_domain_embedding: false
  token_postprocessing: mean
  weight_init_style: pytorch
  drop_path: 0.1
  mae_loss_scale: 0.0
  masked_autoencoding: false
stem:
  modalities:
  - image
  - state
  modality_embed_dim: 256
  normalize_state: ${dataset.normalize_state}
  state_embedding_dim: 1
  image_encoder: ${dataset.image_encoder}
  crossattn_dim_head: 64
  crossattn_heads: 8
  crossattn_modality_dropout: 0.1
  observation_horizon: ${dataset.observation_horizon}
  random_horizon_masking: true
  add_pos_embedding_to_state: false
  num_blocks: 1
  crossattn_latent:
    image: 16
    state: 16
  image:
    _target_: hpt_pretrain.models.policy_stem.MLP
    input_dim: 512
    output_dim: 256
    widths:
    - 128
    num_of_copy: 1
  state:
    _target_: hpt_pretrain.models.policy_stem.MLP
    input_dim: 7
    output_dim: 256
    widths:
    - 128
head:
  _target_: hpt_pretrain.models.policy_head.MLP
  input_dim: 256
  tanh_end: true
  output_dim: 48
  dropout: true
  widths:
  - 256
  - 128
dataloader:
  batch_size: 32
  num_workers: 1
  pin_memory: false
  persistent_workers: false
  drop_last: true
val_dataloader:
  num_workers: 1
  pin_memory: false
  persistent_workers: false
ddp_dataloader:
  num_workers: 16
  pin_memory: false
  persistent_workers: false
  drop_last: false
  prefetch_factor: 2
ddp_val_dataloader:
  num_workers: 8
  pin_memory: false
  persistent_workers: false
  drop_last: false
  prefetch_factor: 2
optimizer:
  _target_: torch.optim.AdamW
  lr: 0.001
  eps: 1.0e-06
  weight_decay: 0.05
optimizer_misc:
  nontrunk_lr_scale: 0.5
warmup_lr:
  lr: 1.0e-10
  step: 1000
train:
  total_epochs: 3000
  total_iters: 80000
  epoch_iters: 1000
  validation_iters: 100
  use_accumulation: false
  pretrained_dir: ''
  max_validation_size: 10
  accumulate_batch_step: 1
lr_scheduler:
  _target_: torch.optim.lr_scheduler.CosineAnnealingLR
  T_max: 80000
  eta_min: 1.0e-06