--- language: - tr license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Large V3 tr Fleurs - Chee Li results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google Fleurs type: google/fleurs config: tr_tr split: None args: 'config: tr split: test' metrics: - name: Wer type: wer value: 649.9222153080274 --- # Whisper Large V3 tr Fleurs - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1432 - Wer: 649.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.0466 | 2.7933 | 500 | 0.1060 | 147.9932 | | 0.006 | 5.5866 | 1000 | 0.1208 | 481.1605 | | 0.0017 | 8.3799 | 1500 | 0.1291 | 602.0769 | | 0.0012 | 11.1732 | 2000 | 0.1288 | 627.3647 | | 0.0002 | 13.9665 | 2500 | 0.1382 | 641.4203 | | 0.0001 | 16.7598 | 3000 | 0.1411 | 647.7520 | | 0.0001 | 19.5531 | 3500 | 0.1426 | 642.9294 | | 0.0001 | 22.3464 | 4000 | 0.1432 | 649.9222 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1