--- language: - pt license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Large V3 pt Fleurs Aug - Chee Li results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google Fleurs type: google/fleurs config: pt_br split: None args: 'config: pt split: test' metrics: - name: Wer type: wer value: 418.6592073715387 --- # Whisper Large V3 pt Fleurs Aug - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1648 - Wer: 418.6592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0298 | 1.2579 | 1000 | 0.1279 | 73.4662 | | 0.0053 | 2.5157 | 2000 | 0.1516 | 315.7726 | | 0.0058 | 3.7736 | 3000 | 0.1560 | 433.2424 | | 0.0005 | 5.0314 | 4000 | 0.1648 | 418.6592 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1