--- base_model: openai/whisper-large-v3 datasets: - google/fleurs language: - fa license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Large V3 fa fleurs- Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: fa_ir split: None args: 'config: fa split: test' metrics: - type: wer value: 33.074139280125195 name: Wer --- # Whisper Large V3 fa fleurs- Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1409 - Wer: 33.0741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 125 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1605 | 1.1521 | 250 | 0.1698 | 16.5640 | | 0.1076 | 2.3041 | 500 | 0.1445 | 26.3351 | | 0.0938 | 3.4562 | 750 | 0.1406 | 34.2381 | | 0.088 | 4.6083 | 1000 | 0.1409 | 33.0741 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1