--- language: - th license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large V3 Th - Chee Li results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: th split: None args: 'config: th split: test' metrics: - name: Wer type: wer value: 1243.2612539099687 --- # Whisper Large V3 Th - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0898 - Wer: 1243.2613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:| | 0.1662 | 0.3740 | 1000 | 0.1388 | 865.8439 | | 0.1298 | 0.7479 | 2000 | 0.1118 | 998.3068 | | 0.062 | 1.1219 | 3000 | 0.0996 | 1036.6313 | | 0.0609 | 1.4959 | 4000 | 0.0898 | 1243.2613 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1