|
import torch, os |
|
import torch.nn.functional as F |
|
from torchvision.transforms.functional import normalize |
|
import numpy as np |
|
from transformers import Pipeline |
|
from skimage import io |
|
from PIL import Image |
|
|
|
|
|
class RMBGPipe(Pipeline): |
|
def __init__(self, **kwargs): |
|
Pipeline.__init__(self, **kwargs) |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
self.model.eval() |
|
|
|
def _sanitize_parameters(self, **kwargs): |
|
|
|
preprocess_kwargs = {} |
|
postprocess_kwargs = {} |
|
if "model_input_size" in kwargs: |
|
preprocess_kwargs["model_input_size"] = kwargs["model_input_size"] |
|
if "out_name" in kwargs: |
|
postprocess_kwargs["out_name"] = kwargs["out_name"] |
|
return preprocess_kwargs, {}, postprocess_kwargs |
|
|
|
def preprocess(self, orig_im: Image, model_input_size: list = [1024, 1024]): |
|
|
|
orig_im_size = orig_im.shape[0:2] |
|
image = self.preprocess_image(orig_im, model_input_size).to(self.device) |
|
inputs = { |
|
"orig_im": orig_im, |
|
"image": image, |
|
"orig_im_size": orig_im_size, |
|
} |
|
return inputs |
|
|
|
def _forward(self, inputs): |
|
result = self.model(inputs.pop("image")) |
|
inputs["result"] = result |
|
return inputs |
|
|
|
def postprocess(self, inputs, out_name=""): |
|
result = inputs.pop("result") |
|
orig_im_size = inputs.pop("orig_im_size") |
|
orig_image = inputs.pop("orig_im") |
|
result_image = self.postprocess_image(result[0][0], orig_im_size) |
|
if out_name != "": |
|
|
|
pil_im = Image.fromarray(result_image) |
|
no_bg_image = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) |
|
no_bg_image.paste(orig_image, mask=pil_im) |
|
no_bg_image.save(out_name) |
|
else: |
|
return result_image |
|
|
|
|
|
def preprocess_image( |
|
self, im: np.ndarray, model_input_size: list = [1024, 1024] |
|
) -> torch.Tensor: |
|
|
|
if len(im.shape) < 3: |
|
im = im[:, :, np.newaxis] |
|
|
|
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1) |
|
im_tensor = F.interpolate( |
|
torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear" |
|
).type(torch.uint8) |
|
image = torch.divide(im_tensor, 255.0) |
|
image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) |
|
return image |
|
|
|
def postprocess_image(self, result: torch.Tensor, im_size: list) -> np.ndarray: |
|
result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result - mi) / (ma - mi) |
|
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8) |
|
im_array = np.squeeze(im_array) |
|
return im_array |
|
|