File size: 1,825 Bytes
301e0f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language:
- nan
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
- mozilla-foundation/common_voice_15_0
model-index:
- name: Whisper Small Taiwanese
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Taiwanese

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 16.1 and the Common Voice 15.0 datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4216
- Cer: 32.6110

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.7938        | 0.16  | 500  | 0.7768          | 55.8341 |
| 0.5845        | 0.32  | 1000 | 0.5947          | 41.1522 |
| 0.459         | 0.48  | 1500 | 0.5132          | 37.6183 |
| 0.3512        | 0.64  | 2000 | 0.4709          | 35.4047 |
| 0.3758        | 0.8   | 2500 | 0.4363          | 33.5778 |
| 0.3191        | 0.96  | 3000 | 0.4216          | 32.6110 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2