Upload model
Browse files- README.md +199 -0
- config.json +21 -0
- configuration_MyResnet.py +26 -0
- model.safetensors +3 -0
- modeling_MyResnet.py +156 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MyResnetModelForImageClassification"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_MyResnet.MyResnetConfig",
|
7 |
+
"AutoModelForImageClassification": "modeling_MyResnet.MyResnetModelForImageClassification"
|
8 |
+
},
|
9 |
+
"in_channels": 3,
|
10 |
+
"model_type": "resnet",
|
11 |
+
"num_channels": 64,
|
12 |
+
"num_classes": 176,
|
13 |
+
"num_residuals": [
|
14 |
+
2,
|
15 |
+
2,
|
16 |
+
2,
|
17 |
+
2
|
18 |
+
],
|
19 |
+
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.45.2"
|
21 |
+
}
|
configuration_MyResnet.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
"""
|
4 |
+
编写自定义配置时需要记住的三个重要事项如下:
|
5 |
+
必须继承自 PretrainedConfig,
|
6 |
+
PretrainedConfig 的 __init__ 方法必须接受任何 kwargs,
|
7 |
+
这些 kwargs 需要传递给超类的 __init__ 方法。
|
8 |
+
"""
|
9 |
+
class MyResnetConfig(PretrainedConfig):
|
10 |
+
model_type = "resnet"
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
num_classes: int = 176, # 分类数
|
15 |
+
in_channels: int = 3, # 输入通道数
|
16 |
+
num_channels: int = 64, # 第一个卷积的输出通道数
|
17 |
+
num_residuals=None, # 每个残差块组合里残差块的数量
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
self.num_classes = num_classes
|
21 |
+
self.in_channels = in_channels
|
22 |
+
self.num_channels = num_channels
|
23 |
+
if num_residuals is None:
|
24 |
+
num_residuals = [2, 2, 2, 2]
|
25 |
+
self.num_residuals = num_residuals
|
26 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0f439c16a4605e7282c4bdfd481b9afdf1ff06ea6cd7ec471953e8ed243cf5d
|
3 |
+
size 45121784
|
modeling_MyResnet.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from transformers import PreTrainedModel
|
6 |
+
from .configuration_MyResnet import MyResnetConfig
|
7 |
+
|
8 |
+
# 设置CUDA异常阻塞,用于调试CUDA相关问题
|
9 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
10 |
+
|
11 |
+
"""
|
12 |
+
定义自己的模型
|
13 |
+
"""
|
14 |
+
|
15 |
+
|
16 |
+
# 定义残差块
|
17 |
+
class Residual(nn.Module):
|
18 |
+
def __init__(self, input_channels, num_channels,
|
19 |
+
use_1x1conv=False, strides=1):
|
20 |
+
super().__init__()
|
21 |
+
# 第一个3x3卷积层
|
22 |
+
self.conv1 = nn.Conv2d(input_channels, num_channels,
|
23 |
+
kernel_size=3, padding=1, stride=strides)
|
24 |
+
# 第二个3x3卷积层
|
25 |
+
self.conv2 = nn.Conv2d(num_channels, num_channels,
|
26 |
+
kernel_size=3, padding=1)
|
27 |
+
# 可选的1x1卷积层,用于调整输入的通道数
|
28 |
+
if use_1x1conv:
|
29 |
+
self.conv3 = nn.Conv2d(input_channels, num_channels,
|
30 |
+
kernel_size=1, stride=strides)
|
31 |
+
else:
|
32 |
+
self.conv3 = None
|
33 |
+
# 批量归一化层
|
34 |
+
self.bn1 = nn.BatchNorm2d(num_channels)
|
35 |
+
self.bn2 = nn.BatchNorm2d(num_channels)
|
36 |
+
|
37 |
+
def forward(self, X):
|
38 |
+
# 第一个卷积 -> 批量归一化 -> ReLU激活
|
39 |
+
Y = F.relu(self.bn1(self.conv1(X)))
|
40 |
+
# 第二个卷积 -> 批量归一化
|
41 |
+
Y = self.bn2(self.conv2(Y))
|
42 |
+
# 如果使用1x1卷积,调整输入的通道数
|
43 |
+
if self.conv3:
|
44 |
+
X = self.conv3(X)
|
45 |
+
# 将输入与输出相加
|
46 |
+
Y += X
|
47 |
+
return F.relu(Y) # 返回激活后的结果
|
48 |
+
|
49 |
+
|
50 |
+
# 组合多个残差块
|
51 |
+
def resnet_block(input_channels, num_channels, num_residuals,
|
52 |
+
first_block=False):
|
53 |
+
"""
|
54 |
+
:param first_block: 是否为第一个块,用于确定是否需要1x1卷积
|
55 |
+
:param input_channels: 输入通道数
|
56 |
+
:param num_channels: 残差块的输出通道数
|
57 |
+
:param num_residuals: 残差块的数量
|
58 |
+
:return: 组合后的多个残差块
|
59 |
+
"""
|
60 |
+
blk = []
|
61 |
+
for i in range(num_residuals):
|
62 |
+
# 第一个残差块需要降维
|
63 |
+
if i == 0 and not first_block:
|
64 |
+
blk.append(Residual(input_channels, num_channels,
|
65 |
+
use_1x1conv=True, strides=2))
|
66 |
+
else:
|
67 |
+
blk.append(Residual(num_channels, num_channels))
|
68 |
+
return blk
|
69 |
+
|
70 |
+
|
71 |
+
# 定义残差网络
|
72 |
+
def net(in_channels, num_channels, num_residuals, num_classes):
|
73 |
+
"""
|
74 |
+
:param in_channels: 输入图像的通道数
|
75 |
+
:param num_channels: 第一个卷积层的输出通道数
|
76 |
+
:param num_residuals: 每个阶段的残差块数量
|
77 |
+
:param num_classes: 分类的数量
|
78 |
+
:return: 构建的残差网络模型
|
79 |
+
"""
|
80 |
+
# 首先是一个7x7卷积层,接着是批量归一化、ReLU激活和3x3最大池化
|
81 |
+
b1 = nn.Sequential(nn.Conv2d(in_channels, num_channels, kernel_size=7, stride=2, padding=3),
|
82 |
+
nn.BatchNorm2d(64), nn.ReLU(),
|
83 |
+
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
|
84 |
+
|
85 |
+
# 构建多个残差块
|
86 |
+
b2 = nn.Sequential(*resnet_block(64, num_channels, num_residuals[0], first_block=True))
|
87 |
+
b3 = nn.Sequential(*resnet_block(num_channels, num_channels * 2, num_residuals[1]))
|
88 |
+
b4 = nn.Sequential(*resnet_block(num_channels * 2, num_channels * 4, num_residuals[2]))
|
89 |
+
b5 = nn.Sequential(*resnet_block(num_channels * 4, num_channels * 8, num_residuals[3]))
|
90 |
+
|
91 |
+
# 全局平均池化后,连接一个全连接层进行分类
|
92 |
+
resnet = nn.Sequential(b1, b2, b3, b4, b5,
|
93 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
94 |
+
nn.Flatten(), nn.Linear(num_channels * 8, num_classes))
|
95 |
+
return resnet
|
96 |
+
|
97 |
+
|
98 |
+
"""
|
99 |
+
把模型封装成huggingface的模型,
|
100 |
+
可以使用transformers库进行训练和推理
|
101 |
+
这里定义了两个模型类:一个用于从一批图像中提取隐藏特征(类似于 BertModel),
|
102 |
+
另一个适用于图像分类(类似于 BertForSequenceClassification)。
|
103 |
+
"""
|
104 |
+
|
105 |
+
|
106 |
+
class MyResnetModel(PreTrainedModel):
|
107 |
+
config_class = MyResnetConfig # 指定配置类
|
108 |
+
|
109 |
+
def __init__(self, config):
|
110 |
+
super().__init__(config)
|
111 |
+
# 根据配置初始化模型
|
112 |
+
self.model = net(
|
113 |
+
in_channels=config.in_channels,
|
114 |
+
num_channels=config.num_channels,
|
115 |
+
num_residuals=config.num_residuals,
|
116 |
+
num_classes=config.num_classes
|
117 |
+
)
|
118 |
+
|
119 |
+
def forward(self, tensor, labels=None):
|
120 |
+
return self.model.forward_features(tensor) # 返回特征
|
121 |
+
|
122 |
+
|
123 |
+
class MyResnetModelForImageClassification(PreTrainedModel):
|
124 |
+
config_class = MyResnetConfig # 指定配置类
|
125 |
+
|
126 |
+
def __init__(self, config):
|
127 |
+
super().__init__(config)
|
128 |
+
# 根据配置初始化模型
|
129 |
+
self.model = net(
|
130 |
+
in_channels=config.in_channels,
|
131 |
+
num_channels=config.num_channels,
|
132 |
+
num_residuals=config.num_residuals,
|
133 |
+
num_classes=config.num_classes
|
134 |
+
)
|
135 |
+
|
136 |
+
"""
|
137 |
+
你可以让模型返回任何你想要的内容,
|
138 |
+
但是像这样返回一个字典,并在传递标签时包含loss,可以使你的模型能够在 Trainer 类中直接使用。
|
139 |
+
只要你计划使用自己的训练循环或其他库进行训练,也可以使用其他输出格式。
|
140 |
+
"""
|
141 |
+
|
142 |
+
def forward(self, X, y):
|
143 |
+
# 前向传播,计算模型输出
|
144 |
+
# print(y)
|
145 |
+
y_hat = self.model(X)
|
146 |
+
if y is not None:
|
147 |
+
# 计算损失
|
148 |
+
loss = torch.nn.functional.cross_entropy(y_hat, y)
|
149 |
+
return {"loss": loss, "logits": y_hat} # 返回损失和输出
|
150 |
+
return {"logits": y_hat}
|
151 |
+
|
152 |
+
def forward_features(self, X):
|
153 |
+
# 返回特征
|
154 |
+
for layer in self.model:
|
155 |
+
X = layer(X)
|
156 |
+
print(layer.__class__.__name__, 'output shape:\t', X.shape)
|