File size: 1,835 Bytes
99d8bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
inference: false
language: ja
---
# japanese-large-lm-1.7b-instruction-sft-4bit-128g-actorder_False
This repository provides a 1.7B parameters Japanese language **quantized** model, fine-tuned and trained by [LINE Corporation](https://linecorp.com/ja/).
## For Japanese
詳細な説明や実験に関しては「[【インターンレポート】量子化による大規模言語モデル軽量化の効果測定](https://engineering.linecorp.com/ja/blog/quantization-lightweighting-llms)」をご覧ください。
## How to use
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("line-corporation/japanese-large-lm-1.7b-instruction-sft", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("line-corporation/japanese-large-lm-1.7b-instruction-sft-4bit-128g-actorder_False")
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
input_text = """四国の県名を全て列挙してください。"""
text = generator(
f"ユーザー: {input_text}\nシステム: ",
max_length = 256,
do_sample = True,
temperature = 0.7,
top_p = 0.9,
top_k = 0,
repetition_penalty = 1.1,
num_beams = 1,
pad_token_id = tokenizer.pad_token_id,
num_return_sequences = 1,
)
print(text) # [{'generated_text': 'ユーザー: 四国の県名を全て列挙してください。\nシステム: 高知県、徳島県、香川県、愛媛県'}]
```
## Tokenization
We use a sentencepiece tokenizer with a unigram language model and byte-fallback.
We **do not** apply pre-tokenization with Japanese tokenizer.
Thus, a user may directly feed raw sentences into the tokenizer.
## License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |