|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel |
|
from transformers.models.clip.modeling_clip import CLIPOutput |
|
|
|
from .configuration_clyp import CLYPConfig, CLYPLossConfig |
|
from .model import InfoNCELoss, create_text_encoder, create_vision_encoder |
|
from .model_rinna import RinnaCLIPModel |
|
|
|
|
|
@dataclass |
|
class CLYPOutput(CLIPOutput): |
|
... |
|
|
|
|
|
class CLYPPreTrainedModel(PreTrainedModel): |
|
config_class = CLYPConfig |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def _init_weights(self, module: Any) -> None: |
|
pass |
|
|
|
|
|
class CLYPModel(CLYPPreTrainedModel): |
|
def __init__(self, config: CLYPConfig): |
|
super().__init__(config) |
|
self.vision_encoder = create_vision_encoder(config.vision_encoder_config) |
|
self.text_encoder = create_text_encoder(config.text_encoder_config) |
|
self.initialize_clip( |
|
learn_temperature=config.learn_temperature, |
|
temperature_init=config.temperature_init, |
|
temperature_min=config.temperature_min, |
|
temperature_max=config.temperature_max, |
|
itc_loss_config=config.itc_loss_config, |
|
) |
|
|
|
def initialize_clip( |
|
self, |
|
learn_temperature: Optional[bool] = None, |
|
temperature_init: Optional[float] = None, |
|
temperature_min: Optional[float] = None, |
|
temperature_max: Optional[float] = None, |
|
itc_loss_config: Optional[CLYPLossConfig] = None, |
|
) -> None: |
|
|
|
if itc_loss_config: |
|
raise NotImplementedError |
|
else: |
|
assert learn_temperature is not None |
|
assert temperature_init is not None |
|
self.itc_loss_fn = InfoNCELoss( |
|
learn_temperature=learn_temperature, |
|
init_temperature=temperature_init, |
|
max_temperature=temperature_max, |
|
min_temperature=temperature_min, |
|
gather_with_grad=True, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
return_loss: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> tuple | CLYPOutput: |
|
image_feats = self.vision_encoder(pixel_values) |
|
text_feats = self.text_encoder( |
|
{ |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"position_ids": position_ids, |
|
} |
|
) |
|
|
|
loss = None |
|
if return_loss: |
|
loss = self.itc_loss_fn(image_feats, text_feats) |
|
|
|
image_embeds = F.normalize(image_feats, dim=-1) |
|
text_embeds = F.normalize(text_feats, dim=-1) |
|
|
|
sim_i2t = image_embeds @ text_embeds.T |
|
sim_t2i = text_embeds @ image_embeds.T |
|
|
|
logits_per_image = sim_i2t / self.itc_loss_fn.temperature |
|
logits_per_text = sim_t2i / self.itc_loss_fn.temperature |
|
|
|
if not return_dict: |
|
if loss is None: |
|
return (logits_per_image, logits_per_text, text_embeds, image_embeds) |
|
return (loss, logits_per_image, logits_per_text, text_embeds, image_embeds) |
|
|
|
|
|
|
|
|
|
return CLYPOutput( |
|
loss=loss, |
|
logits_per_image=logits_per_image, |
|
logits_per_text=logits_per_text, |
|
text_embeds=text_embeds, |
|
image_embeds=image_embeds, |
|
) |
|
|
|
def get_text_features( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
text_feats = self.text_encoder( |
|
{ |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"position_ids": position_ids, |
|
} |
|
) |
|
return text_feats |
|
|
|
def get_image_features( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
image_feats = self.vision_encoder(pixel_values) |
|
return image_feats |
|
|
|
|
|
if __name__ == "__main__": |
|
model = CLYPModel.from_pretrained(".") |
|
|