lilkm commited on
Commit
f96d685
·
verified ·
1 Parent(s): 5567e89

Upload config

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +23 -0
  3. configuration_resnet.py +80 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoConfig": "configuration_resnet.ResNet10Config"
4
+ },
5
+ "depths": [
6
+ 1,
7
+ 1,
8
+ 1,
9
+ 1
10
+ ],
11
+ "embedding_size": 64,
12
+ "hidden_act": "relu",
13
+ "hidden_sizes": [
14
+ 64,
15
+ 128,
16
+ 256,
17
+ 512
18
+ ],
19
+ "model_type": "resnet10",
20
+ "num_channels": 3,
21
+ "pooler": "avg",
22
+ "transformers_version": "4.48.1"
23
+ }
configuration_resnet.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8#
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ """ResNet model configuration"""
14
+
15
+
16
+ from transformers import PretrainedConfig
17
+
18
+
19
+ class ResNet10Config(PretrainedConfig):
20
+ r"""
21
+ This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an
22
+ ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
23
+ with the defaults will yield a similar configuration to that of the ResNet
24
+ [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture.
25
+
26
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
27
+ documentation from [`PretrainedConfig`] for more information.
28
+
29
+ Args:
30
+ num_channels (`int`, *optional*, defaults to 3):
31
+ The number of input channels.
32
+ embedding_size (`int`, *optional*, defaults to 64):
33
+ Dimensionality (hidden size) for the embedding layer.
34
+ hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
35
+ Dimensionality (hidden size) at each stage.
36
+ depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
37
+ Depth (number of layers) for each stage.
38
+ layer_type (`str`, *optional*, defaults to `"bottleneck"`):
39
+ The layer to use, it can be either `"basic"` (used for smaller models, like resnet-18 or resnet-34) or
40
+ `"bottleneck"` (used for larger models like resnet-50 and above).
41
+ hidden_act (`str`, *optional*, defaults to `"relu"`):
42
+ The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
43
+ are supported.
44
+ downsample_in_first_stage (`bool`, *optional*, defaults to `False`):
45
+ If `True`, the first stage will downsample the inputs using a `stride` of 2.
46
+
47
+ Example:
48
+ ```python
49
+ >>> from transformers import AutoConfig, AutoModel
50
+
51
+ >>> # Initializing a ResNet resnet-50 style configuration
52
+ >>> configuration = AutoConfig.from_pretrained("helper2424/resnet10")
53
+
54
+ >>> # Initializing a model (with random weights) from the resnet-50 style configuration
55
+ >>> model = AutoModel.from_pretrained("helper2424/resnet10")
56
+
57
+ >>> # Accessing the model configuration
58
+ >>> model.config = configuration
59
+ ```
60
+ """
61
+
62
+ model_type = "resnet10"
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ embedding_size=64,
68
+ hidden_sizes=[64, 128, 256, 512],
69
+ depths=[1, 1, 1, 1],
70
+ hidden_act="relu",
71
+ pooler="avg",
72
+ **kwargs,
73
+ ):
74
+ super().__init__(**kwargs)
75
+ self.num_channels = num_channels
76
+ self.embedding_size = embedding_size
77
+ self.hidden_sizes = hidden_sizes
78
+ self.depths = depths
79
+ self.hidden_act = hidden_act
80
+ self.pooler = pooler