Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
|
|
|
|
|
|
3 |
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
4 |
tags:
|
5 |
- generated_from_trainer
|
@@ -8,8 +11,45 @@ model-index:
|
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
15 |
<details><summary>See axolotl config</summary>
|
|
|
1 |
---
|
2 |
license: other
|
3 |
+
license_name: llama-3
|
4 |
+
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE
|
5 |
+
|
6 |
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
7 |
tags:
|
8 |
- generated_from_trainer
|
|
|
11 |
results: []
|
12 |
---
|
13 |
|
14 |
+
<p align="center">
|
15 |
+
<img width=400 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kg3QjQOde0X743csGJT-f.png" alt="Suzume - a Japanese tree sparrow"/>
|
16 |
+
</p>
|
17 |
+
|
18 |
+
# Suzume
|
19 |
+
|
20 |
+
This Suzume 8B, a Japanese finetune of Llama 3.
|
21 |
+
|
22 |
+
Llama 3 has exhibited excellent performance on many English language benchmarks.
|
23 |
+
However, it also seemingly been finetuned on mostly English data, meaning that it will respond in English, even if prompted in Japanese.
|
24 |
+
|
25 |
+
We have fine-tuned Llama 3 on almost 3,000 Japanese conversations meaning that this model has the smarts of Llama 3 but has the added ability to chat in Japanese.
|
26 |
+
|
27 |
+
Please feel free to comment on this model and give us feedback in the Community tab!
|
28 |
+
|
29 |
+
# How to use
|
30 |
+
|
31 |
+
You can use the original trained model with vLLM like so:
|
32 |
+
|
33 |
+
```python
|
34 |
+
from vllm import LLM, SamplingParams
|
35 |
+
|
36 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
37 |
+
|
38 |
+
llm = LLM(model="lightblue/suzume-llama-3-8B-japanese")
|
39 |
+
|
40 |
+
prompts = [
|
41 |
+
"東京のおすすめの観光スポットを教えて下さい",
|
42 |
+
]
|
43 |
+
|
44 |
+
outputs = llm.generate(prompts, sampling_params)
|
45 |
+
|
46 |
+
for output in outputs:
|
47 |
+
prompt = output.prompt
|
48 |
+
generated_text = output.outputs[0].text
|
49 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
50 |
+
```
|
51 |
+
|
52 |
+
# Training config
|
53 |
|
54 |
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
55 |
<details><summary>See axolotl config</summary>
|