File size: 2,052 Bytes
f2cc44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: reranker_continuous_filt_max7_train
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# reranker_continuous_filt_max7_train

This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co./Qwen/Qwen2.5-0.5B-Instruct) on the reranker_continuous_filt_max7_train dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3869

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.403         | 0.1000 | 1977  | 0.4783          |
| 0.5192        | 0.2000 | 3954  | 0.4524          |
| 0.3639        | 0.3000 | 5931  | 0.4370          |
| 0.4343        | 0.4000 | 7908  | 0.4286          |
| 0.3929        | 0.5000 | 9885  | 0.4163          |
| 0.4455        | 0.6000 | 11862 | 0.4040          |
| 0.3775        | 0.7000 | 13839 | 0.3947          |
| 0.3629        | 0.8000 | 15816 | 0.3898          |
| 0.5186        | 0.9000 | 17793 | 0.3872          |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3