liddlefish commited on
Commit
6747a57
·
verified ·
1 Parent(s): 2e4ed2e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,3073 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - feature-extraction
5
+ - sentence-similarity
6
+ - transformers
7
+ - mteb
8
+ model-index:
9
+ - name: bge-base-en-v1.5
10
+ results:
11
+ - task:
12
+ type: Classification
13
+ dataset:
14
+ type: mteb/amazon_counterfactual
15
+ name: MTEB AmazonCounterfactualClassification (en)
16
+ config: en
17
+ split: test
18
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
19
+ metrics:
20
+ - type: accuracy
21
+ value: 76.14925373134328
22
+ - type: ap
23
+ value: 39.32336517995478
24
+ - type: f1
25
+ value: 70.16902252611425
26
+ - task:
27
+ type: Classification
28
+ dataset:
29
+ type: mteb/amazon_polarity
30
+ name: MTEB AmazonPolarityClassification
31
+ config: default
32
+ split: test
33
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
34
+ metrics:
35
+ - type: accuracy
36
+ value: 93.386825
37
+ - type: ap
38
+ value: 90.21276917991995
39
+ - type: f1
40
+ value: 93.37741030006174
41
+ - task:
42
+ type: Classification
43
+ dataset:
44
+ type: mteb/amazon_reviews_multi
45
+ name: MTEB AmazonReviewsClassification (en)
46
+ config: en
47
+ split: test
48
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
49
+ metrics:
50
+ - type: accuracy
51
+ value: 48.846000000000004
52
+ - type: f1
53
+ value: 48.14646269778261
54
+ - task:
55
+ type: Retrieval
56
+ dataset:
57
+ type: arguana
58
+ name: MTEB ArguAna
59
+ config: default
60
+ split: test
61
+ revision: None
62
+ metrics:
63
+ - type: map_at_1
64
+ value: 40.754000000000005
65
+ - type: map_at_10
66
+ value: 55.761
67
+ - type: map_at_100
68
+ value: 56.330999999999996
69
+ - type: map_at_1000
70
+ value: 56.333999999999996
71
+ - type: map_at_3
72
+ value: 51.92
73
+ - type: map_at_5
74
+ value: 54.010999999999996
75
+ - type: mrr_at_1
76
+ value: 41.181
77
+ - type: mrr_at_10
78
+ value: 55.967999999999996
79
+ - type: mrr_at_100
80
+ value: 56.538
81
+ - type: mrr_at_1000
82
+ value: 56.542
83
+ - type: mrr_at_3
84
+ value: 51.980000000000004
85
+ - type: mrr_at_5
86
+ value: 54.208999999999996
87
+ - type: ndcg_at_1
88
+ value: 40.754000000000005
89
+ - type: ndcg_at_10
90
+ value: 63.605000000000004
91
+ - type: ndcg_at_100
92
+ value: 66.05199999999999
93
+ - type: ndcg_at_1000
94
+ value: 66.12
95
+ - type: ndcg_at_3
96
+ value: 55.708
97
+ - type: ndcg_at_5
98
+ value: 59.452000000000005
99
+ - type: precision_at_1
100
+ value: 40.754000000000005
101
+ - type: precision_at_10
102
+ value: 8.841000000000001
103
+ - type: precision_at_100
104
+ value: 0.991
105
+ - type: precision_at_1000
106
+ value: 0.1
107
+ - type: precision_at_3
108
+ value: 22.238
109
+ - type: precision_at_5
110
+ value: 15.149000000000001
111
+ - type: recall_at_1
112
+ value: 40.754000000000005
113
+ - type: recall_at_10
114
+ value: 88.407
115
+ - type: recall_at_100
116
+ value: 99.14699999999999
117
+ - type: recall_at_1000
118
+ value: 99.644
119
+ - type: recall_at_3
120
+ value: 66.714
121
+ - type: recall_at_5
122
+ value: 75.747
123
+ - task:
124
+ type: Clustering
125
+ dataset:
126
+ type: mteb/arxiv-clustering-p2p
127
+ name: MTEB ArxivClusteringP2P
128
+ config: default
129
+ split: test
130
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
131
+ metrics:
132
+ - type: v_measure
133
+ value: 48.74884539679369
134
+ - task:
135
+ type: Clustering
136
+ dataset:
137
+ type: mteb/arxiv-clustering-s2s
138
+ name: MTEB ArxivClusteringS2S
139
+ config: default
140
+ split: test
141
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
142
+ metrics:
143
+ - type: v_measure
144
+ value: 42.8075893810716
145
+ - task:
146
+ type: Reranking
147
+ dataset:
148
+ type: mteb/askubuntudupquestions-reranking
149
+ name: MTEB AskUbuntuDupQuestions
150
+ config: default
151
+ split: test
152
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
153
+ metrics:
154
+ - type: map
155
+ value: 62.128470519187736
156
+ - type: mrr
157
+ value: 74.28065778481289
158
+ - task:
159
+ type: STS
160
+ dataset:
161
+ type: mteb/biosses-sts
162
+ name: MTEB BIOSSES
163
+ config: default
164
+ split: test
165
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
166
+ metrics:
167
+ - type: cos_sim_pearson
168
+ value: 89.24629081484655
169
+ - type: cos_sim_spearman
170
+ value: 86.93752309911496
171
+ - type: euclidean_pearson
172
+ value: 87.58589628573816
173
+ - type: euclidean_spearman
174
+ value: 88.05622328825284
175
+ - type: manhattan_pearson
176
+ value: 87.5594959805773
177
+ - type: manhattan_spearman
178
+ value: 88.19658793233961
179
+ - task:
180
+ type: Classification
181
+ dataset:
182
+ type: mteb/banking77
183
+ name: MTEB Banking77Classification
184
+ config: default
185
+ split: test
186
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
187
+ metrics:
188
+ - type: accuracy
189
+ value: 86.9512987012987
190
+ - type: f1
191
+ value: 86.92515357973708
192
+ - task:
193
+ type: Clustering
194
+ dataset:
195
+ type: mteb/biorxiv-clustering-p2p
196
+ name: MTEB BiorxivClusteringP2P
197
+ config: default
198
+ split: test
199
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
200
+ metrics:
201
+ - type: v_measure
202
+ value: 39.10263762928872
203
+ - task:
204
+ type: Clustering
205
+ dataset:
206
+ type: mteb/biorxiv-clustering-s2s
207
+ name: MTEB BiorxivClusteringS2S
208
+ config: default
209
+ split: test
210
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
211
+ metrics:
212
+ - type: v_measure
213
+ value: 36.69711517426737
214
+ - task:
215
+ type: Retrieval
216
+ dataset:
217
+ type: BeIR/cqadupstack
218
+ name: MTEB CQADupstackAndroidRetrieval
219
+ config: default
220
+ split: test
221
+ revision: None
222
+ metrics:
223
+ - type: map_at_1
224
+ value: 32.327
225
+ - type: map_at_10
226
+ value: 44.099
227
+ - type: map_at_100
228
+ value: 45.525
229
+ - type: map_at_1000
230
+ value: 45.641999999999996
231
+ - type: map_at_3
232
+ value: 40.47
233
+ - type: map_at_5
234
+ value: 42.36
235
+ - type: mrr_at_1
236
+ value: 39.199
237
+ - type: mrr_at_10
238
+ value: 49.651
239
+ - type: mrr_at_100
240
+ value: 50.29
241
+ - type: mrr_at_1000
242
+ value: 50.329
243
+ - type: mrr_at_3
244
+ value: 46.924
245
+ - type: mrr_at_5
246
+ value: 48.548
247
+ - type: ndcg_at_1
248
+ value: 39.199
249
+ - type: ndcg_at_10
250
+ value: 50.773
251
+ - type: ndcg_at_100
252
+ value: 55.67999999999999
253
+ - type: ndcg_at_1000
254
+ value: 57.495
255
+ - type: ndcg_at_3
256
+ value: 45.513999999999996
257
+ - type: ndcg_at_5
258
+ value: 47.703
259
+ - type: precision_at_1
260
+ value: 39.199
261
+ - type: precision_at_10
262
+ value: 9.914000000000001
263
+ - type: precision_at_100
264
+ value: 1.5310000000000001
265
+ - type: precision_at_1000
266
+ value: 0.198
267
+ - type: precision_at_3
268
+ value: 21.984
269
+ - type: precision_at_5
270
+ value: 15.737000000000002
271
+ - type: recall_at_1
272
+ value: 32.327
273
+ - type: recall_at_10
274
+ value: 63.743
275
+ - type: recall_at_100
276
+ value: 84.538
277
+ - type: recall_at_1000
278
+ value: 96.089
279
+ - type: recall_at_3
280
+ value: 48.065000000000005
281
+ - type: recall_at_5
282
+ value: 54.519
283
+ - task:
284
+ type: Retrieval
285
+ dataset:
286
+ type: BeIR/cqadupstack
287
+ name: MTEB CQADupstackEnglishRetrieval
288
+ config: default
289
+ split: test
290
+ revision: None
291
+ metrics:
292
+ - type: map_at_1
293
+ value: 32.671
294
+ - type: map_at_10
295
+ value: 42.954
296
+ - type: map_at_100
297
+ value: 44.151
298
+ - type: map_at_1000
299
+ value: 44.287
300
+ - type: map_at_3
301
+ value: 39.912
302
+ - type: map_at_5
303
+ value: 41.798
304
+ - type: mrr_at_1
305
+ value: 41.465
306
+ - type: mrr_at_10
307
+ value: 49.351
308
+ - type: mrr_at_100
309
+ value: 49.980000000000004
310
+ - type: mrr_at_1000
311
+ value: 50.016000000000005
312
+ - type: mrr_at_3
313
+ value: 47.144000000000005
314
+ - type: mrr_at_5
315
+ value: 48.592999999999996
316
+ - type: ndcg_at_1
317
+ value: 41.465
318
+ - type: ndcg_at_10
319
+ value: 48.565999999999995
320
+ - type: ndcg_at_100
321
+ value: 52.76499999999999
322
+ - type: ndcg_at_1000
323
+ value: 54.749
324
+ - type: ndcg_at_3
325
+ value: 44.57
326
+ - type: ndcg_at_5
327
+ value: 46.759
328
+ - type: precision_at_1
329
+ value: 41.465
330
+ - type: precision_at_10
331
+ value: 9.107999999999999
332
+ - type: precision_at_100
333
+ value: 1.433
334
+ - type: precision_at_1000
335
+ value: 0.191
336
+ - type: precision_at_3
337
+ value: 21.423000000000002
338
+ - type: precision_at_5
339
+ value: 15.414
340
+ - type: recall_at_1
341
+ value: 32.671
342
+ - type: recall_at_10
343
+ value: 57.738
344
+ - type: recall_at_100
345
+ value: 75.86500000000001
346
+ - type: recall_at_1000
347
+ value: 88.36
348
+ - type: recall_at_3
349
+ value: 45.626
350
+ - type: recall_at_5
351
+ value: 51.812000000000005
352
+ - task:
353
+ type: Retrieval
354
+ dataset:
355
+ type: BeIR/cqadupstack
356
+ name: MTEB CQADupstackGamingRetrieval
357
+ config: default
358
+ split: test
359
+ revision: None
360
+ metrics:
361
+ - type: map_at_1
362
+ value: 41.185
363
+ - type: map_at_10
364
+ value: 53.929
365
+ - type: map_at_100
366
+ value: 54.92
367
+ - type: map_at_1000
368
+ value: 54.967999999999996
369
+ - type: map_at_3
370
+ value: 50.70400000000001
371
+ - type: map_at_5
372
+ value: 52.673
373
+ - type: mrr_at_1
374
+ value: 47.398
375
+ - type: mrr_at_10
376
+ value: 57.303000000000004
377
+ - type: mrr_at_100
378
+ value: 57.959
379
+ - type: mrr_at_1000
380
+ value: 57.985
381
+ - type: mrr_at_3
382
+ value: 54.932
383
+ - type: mrr_at_5
384
+ value: 56.464999999999996
385
+ - type: ndcg_at_1
386
+ value: 47.398
387
+ - type: ndcg_at_10
388
+ value: 59.653
389
+ - type: ndcg_at_100
390
+ value: 63.627
391
+ - type: ndcg_at_1000
392
+ value: 64.596
393
+ - type: ndcg_at_3
394
+ value: 54.455
395
+ - type: ndcg_at_5
396
+ value: 57.245000000000005
397
+ - type: precision_at_1
398
+ value: 47.398
399
+ - type: precision_at_10
400
+ value: 9.524000000000001
401
+ - type: precision_at_100
402
+ value: 1.243
403
+ - type: precision_at_1000
404
+ value: 0.13699999999999998
405
+ - type: precision_at_3
406
+ value: 24.389
407
+ - type: precision_at_5
408
+ value: 16.752
409
+ - type: recall_at_1
410
+ value: 41.185
411
+ - type: recall_at_10
412
+ value: 73.193
413
+ - type: recall_at_100
414
+ value: 90.357
415
+ - type: recall_at_1000
416
+ value: 97.253
417
+ - type: recall_at_3
418
+ value: 59.199999999999996
419
+ - type: recall_at_5
420
+ value: 66.118
421
+ - task:
422
+ type: Retrieval
423
+ dataset:
424
+ type: BeIR/cqadupstack
425
+ name: MTEB CQADupstackGisRetrieval
426
+ config: default
427
+ split: test
428
+ revision: None
429
+ metrics:
430
+ - type: map_at_1
431
+ value: 27.27
432
+ - type: map_at_10
433
+ value: 36.223
434
+ - type: map_at_100
435
+ value: 37.218
436
+ - type: map_at_1000
437
+ value: 37.293
438
+ - type: map_at_3
439
+ value: 33.503
440
+ - type: map_at_5
441
+ value: 35.097
442
+ - type: mrr_at_1
443
+ value: 29.492
444
+ - type: mrr_at_10
445
+ value: 38.352000000000004
446
+ - type: mrr_at_100
447
+ value: 39.188
448
+ - type: mrr_at_1000
449
+ value: 39.247
450
+ - type: mrr_at_3
451
+ value: 35.876000000000005
452
+ - type: mrr_at_5
453
+ value: 37.401
454
+ - type: ndcg_at_1
455
+ value: 29.492
456
+ - type: ndcg_at_10
457
+ value: 41.239
458
+ - type: ndcg_at_100
459
+ value: 46.066
460
+ - type: ndcg_at_1000
461
+ value: 47.992000000000004
462
+ - type: ndcg_at_3
463
+ value: 36.11
464
+ - type: ndcg_at_5
465
+ value: 38.772
466
+ - type: precision_at_1
467
+ value: 29.492
468
+ - type: precision_at_10
469
+ value: 6.260000000000001
470
+ - type: precision_at_100
471
+ value: 0.914
472
+ - type: precision_at_1000
473
+ value: 0.11100000000000002
474
+ - type: precision_at_3
475
+ value: 15.104000000000001
476
+ - type: precision_at_5
477
+ value: 10.644
478
+ - type: recall_at_1
479
+ value: 27.27
480
+ - type: recall_at_10
481
+ value: 54.589
482
+ - type: recall_at_100
483
+ value: 76.70700000000001
484
+ - type: recall_at_1000
485
+ value: 91.158
486
+ - type: recall_at_3
487
+ value: 40.974
488
+ - type: recall_at_5
489
+ value: 47.327000000000005
490
+ - task:
491
+ type: Retrieval
492
+ dataset:
493
+ type: BeIR/cqadupstack
494
+ name: MTEB CQADupstackMathematicaRetrieval
495
+ config: default
496
+ split: test
497
+ revision: None
498
+ metrics:
499
+ - type: map_at_1
500
+ value: 17.848
501
+ - type: map_at_10
502
+ value: 26.207
503
+ - type: map_at_100
504
+ value: 27.478
505
+ - type: map_at_1000
506
+ value: 27.602
507
+ - type: map_at_3
508
+ value: 23.405
509
+ - type: map_at_5
510
+ value: 24.98
511
+ - type: mrr_at_1
512
+ value: 21.891
513
+ - type: mrr_at_10
514
+ value: 31.041999999999998
515
+ - type: mrr_at_100
516
+ value: 32.092
517
+ - type: mrr_at_1000
518
+ value: 32.151999999999994
519
+ - type: mrr_at_3
520
+ value: 28.358
521
+ - type: mrr_at_5
522
+ value: 29.969
523
+ - type: ndcg_at_1
524
+ value: 21.891
525
+ - type: ndcg_at_10
526
+ value: 31.585
527
+ - type: ndcg_at_100
528
+ value: 37.531
529
+ - type: ndcg_at_1000
530
+ value: 40.256
531
+ - type: ndcg_at_3
532
+ value: 26.508
533
+ - type: ndcg_at_5
534
+ value: 28.894
535
+ - type: precision_at_1
536
+ value: 21.891
537
+ - type: precision_at_10
538
+ value: 5.795999999999999
539
+ - type: precision_at_100
540
+ value: 0.9990000000000001
541
+ - type: precision_at_1000
542
+ value: 0.13799999999999998
543
+ - type: precision_at_3
544
+ value: 12.769
545
+ - type: precision_at_5
546
+ value: 9.279
547
+ - type: recall_at_1
548
+ value: 17.848
549
+ - type: recall_at_10
550
+ value: 43.452
551
+ - type: recall_at_100
552
+ value: 69.216
553
+ - type: recall_at_1000
554
+ value: 88.102
555
+ - type: recall_at_3
556
+ value: 29.18
557
+ - type: recall_at_5
558
+ value: 35.347
559
+ - task:
560
+ type: Retrieval
561
+ dataset:
562
+ type: BeIR/cqadupstack
563
+ name: MTEB CQADupstackPhysicsRetrieval
564
+ config: default
565
+ split: test
566
+ revision: None
567
+ metrics:
568
+ - type: map_at_1
569
+ value: 30.94
570
+ - type: map_at_10
571
+ value: 41.248000000000005
572
+ - type: map_at_100
573
+ value: 42.495
574
+ - type: map_at_1000
575
+ value: 42.602000000000004
576
+ - type: map_at_3
577
+ value: 37.939
578
+ - type: map_at_5
579
+ value: 39.924
580
+ - type: mrr_at_1
581
+ value: 37.824999999999996
582
+ - type: mrr_at_10
583
+ value: 47.041
584
+ - type: mrr_at_100
585
+ value: 47.83
586
+ - type: mrr_at_1000
587
+ value: 47.878
588
+ - type: mrr_at_3
589
+ value: 44.466
590
+ - type: mrr_at_5
591
+ value: 46.111999999999995
592
+ - type: ndcg_at_1
593
+ value: 37.824999999999996
594
+ - type: ndcg_at_10
595
+ value: 47.223
596
+ - type: ndcg_at_100
597
+ value: 52.394
598
+ - type: ndcg_at_1000
599
+ value: 54.432
600
+ - type: ndcg_at_3
601
+ value: 42.032000000000004
602
+ - type: ndcg_at_5
603
+ value: 44.772
604
+ - type: precision_at_1
605
+ value: 37.824999999999996
606
+ - type: precision_at_10
607
+ value: 8.393
608
+ - type: precision_at_100
609
+ value: 1.2890000000000001
610
+ - type: precision_at_1000
611
+ value: 0.164
612
+ - type: precision_at_3
613
+ value: 19.698
614
+ - type: precision_at_5
615
+ value: 14.013
616
+ - type: recall_at_1
617
+ value: 30.94
618
+ - type: recall_at_10
619
+ value: 59.316
620
+ - type: recall_at_100
621
+ value: 80.783
622
+ - type: recall_at_1000
623
+ value: 94.15400000000001
624
+ - type: recall_at_3
625
+ value: 44.712
626
+ - type: recall_at_5
627
+ value: 51.932
628
+ - task:
629
+ type: Retrieval
630
+ dataset:
631
+ type: BeIR/cqadupstack
632
+ name: MTEB CQADupstackProgrammersRetrieval
633
+ config: default
634
+ split: test
635
+ revision: None
636
+ metrics:
637
+ - type: map_at_1
638
+ value: 27.104
639
+ - type: map_at_10
640
+ value: 36.675999999999995
641
+ - type: map_at_100
642
+ value: 38.076
643
+ - type: map_at_1000
644
+ value: 38.189
645
+ - type: map_at_3
646
+ value: 33.733999999999995
647
+ - type: map_at_5
648
+ value: 35.287
649
+ - type: mrr_at_1
650
+ value: 33.904
651
+ - type: mrr_at_10
652
+ value: 42.55
653
+ - type: mrr_at_100
654
+ value: 43.434
655
+ - type: mrr_at_1000
656
+ value: 43.494
657
+ - type: mrr_at_3
658
+ value: 40.126
659
+ - type: mrr_at_5
660
+ value: 41.473
661
+ - type: ndcg_at_1
662
+ value: 33.904
663
+ - type: ndcg_at_10
664
+ value: 42.414
665
+ - type: ndcg_at_100
666
+ value: 48.203
667
+ - type: ndcg_at_1000
668
+ value: 50.437
669
+ - type: ndcg_at_3
670
+ value: 37.633
671
+ - type: ndcg_at_5
672
+ value: 39.67
673
+ - type: precision_at_1
674
+ value: 33.904
675
+ - type: precision_at_10
676
+ value: 7.82
677
+ - type: precision_at_100
678
+ value: 1.2409999999999999
679
+ - type: precision_at_1000
680
+ value: 0.159
681
+ - type: precision_at_3
682
+ value: 17.884
683
+ - type: precision_at_5
684
+ value: 12.648000000000001
685
+ - type: recall_at_1
686
+ value: 27.104
687
+ - type: recall_at_10
688
+ value: 53.563
689
+ - type: recall_at_100
690
+ value: 78.557
691
+ - type: recall_at_1000
692
+ value: 93.533
693
+ - type: recall_at_3
694
+ value: 39.92
695
+ - type: recall_at_5
696
+ value: 45.457
697
+ - task:
698
+ type: Retrieval
699
+ dataset:
700
+ type: BeIR/cqadupstack
701
+ name: MTEB CQADupstackRetrieval
702
+ config: default
703
+ split: test
704
+ revision: None
705
+ metrics:
706
+ - type: map_at_1
707
+ value: 27.707749999999997
708
+ - type: map_at_10
709
+ value: 36.961
710
+ - type: map_at_100
711
+ value: 38.158833333333334
712
+ - type: map_at_1000
713
+ value: 38.270333333333326
714
+ - type: map_at_3
715
+ value: 34.07183333333334
716
+ - type: map_at_5
717
+ value: 35.69533333333334
718
+ - type: mrr_at_1
719
+ value: 32.81875
720
+ - type: mrr_at_10
721
+ value: 41.293
722
+ - type: mrr_at_100
723
+ value: 42.116499999999995
724
+ - type: mrr_at_1000
725
+ value: 42.170249999999996
726
+ - type: mrr_at_3
727
+ value: 38.83983333333333
728
+ - type: mrr_at_5
729
+ value: 40.29775
730
+ - type: ndcg_at_1
731
+ value: 32.81875
732
+ - type: ndcg_at_10
733
+ value: 42.355
734
+ - type: ndcg_at_100
735
+ value: 47.41374999999999
736
+ - type: ndcg_at_1000
737
+ value: 49.5805
738
+ - type: ndcg_at_3
739
+ value: 37.52825
740
+ - type: ndcg_at_5
741
+ value: 39.83266666666667
742
+ - type: precision_at_1
743
+ value: 32.81875
744
+ - type: precision_at_10
745
+ value: 7.382416666666666
746
+ - type: precision_at_100
747
+ value: 1.1640833333333334
748
+ - type: precision_at_1000
749
+ value: 0.15383333333333335
750
+ - type: precision_at_3
751
+ value: 17.134166666666665
752
+ - type: precision_at_5
753
+ value: 12.174833333333336
754
+ - type: recall_at_1
755
+ value: 27.707749999999997
756
+ - type: recall_at_10
757
+ value: 53.945
758
+ - type: recall_at_100
759
+ value: 76.191
760
+ - type: recall_at_1000
761
+ value: 91.101
762
+ - type: recall_at_3
763
+ value: 40.39083333333334
764
+ - type: recall_at_5
765
+ value: 46.40083333333333
766
+ - task:
767
+ type: Retrieval
768
+ dataset:
769
+ type: BeIR/cqadupstack
770
+ name: MTEB CQADupstackStatsRetrieval
771
+ config: default
772
+ split: test
773
+ revision: None
774
+ metrics:
775
+ - type: map_at_1
776
+ value: 26.482
777
+ - type: map_at_10
778
+ value: 33.201
779
+ - type: map_at_100
780
+ value: 34.107
781
+ - type: map_at_1000
782
+ value: 34.197
783
+ - type: map_at_3
784
+ value: 31.174000000000003
785
+ - type: map_at_5
786
+ value: 32.279
787
+ - type: mrr_at_1
788
+ value: 29.908
789
+ - type: mrr_at_10
790
+ value: 36.235
791
+ - type: mrr_at_100
792
+ value: 37.04
793
+ - type: mrr_at_1000
794
+ value: 37.105
795
+ - type: mrr_at_3
796
+ value: 34.355999999999995
797
+ - type: mrr_at_5
798
+ value: 35.382999999999996
799
+ - type: ndcg_at_1
800
+ value: 29.908
801
+ - type: ndcg_at_10
802
+ value: 37.325
803
+ - type: ndcg_at_100
804
+ value: 41.795
805
+ - type: ndcg_at_1000
806
+ value: 44.105
807
+ - type: ndcg_at_3
808
+ value: 33.555
809
+ - type: ndcg_at_5
810
+ value: 35.266999999999996
811
+ - type: precision_at_1
812
+ value: 29.908
813
+ - type: precision_at_10
814
+ value: 5.721
815
+ - type: precision_at_100
816
+ value: 0.8630000000000001
817
+ - type: precision_at_1000
818
+ value: 0.11299999999999999
819
+ - type: precision_at_3
820
+ value: 14.008000000000001
821
+ - type: precision_at_5
822
+ value: 9.754999999999999
823
+ - type: recall_at_1
824
+ value: 26.482
825
+ - type: recall_at_10
826
+ value: 47.072
827
+ - type: recall_at_100
828
+ value: 67.27
829
+ - type: recall_at_1000
830
+ value: 84.371
831
+ - type: recall_at_3
832
+ value: 36.65
833
+ - type: recall_at_5
834
+ value: 40.774
835
+ - task:
836
+ type: Retrieval
837
+ dataset:
838
+ type: BeIR/cqadupstack
839
+ name: MTEB CQADupstackTexRetrieval
840
+ config: default
841
+ split: test
842
+ revision: None
843
+ metrics:
844
+ - type: map_at_1
845
+ value: 18.815
846
+ - type: map_at_10
847
+ value: 26.369999999999997
848
+ - type: map_at_100
849
+ value: 27.458
850
+ - type: map_at_1000
851
+ value: 27.588
852
+ - type: map_at_3
853
+ value: 23.990000000000002
854
+ - type: map_at_5
855
+ value: 25.345000000000002
856
+ - type: mrr_at_1
857
+ value: 22.953000000000003
858
+ - type: mrr_at_10
859
+ value: 30.342999999999996
860
+ - type: mrr_at_100
861
+ value: 31.241000000000003
862
+ - type: mrr_at_1000
863
+ value: 31.319000000000003
864
+ - type: mrr_at_3
865
+ value: 28.16
866
+ - type: mrr_at_5
867
+ value: 29.406
868
+ - type: ndcg_at_1
869
+ value: 22.953000000000003
870
+ - type: ndcg_at_10
871
+ value: 31.151
872
+ - type: ndcg_at_100
873
+ value: 36.309000000000005
874
+ - type: ndcg_at_1000
875
+ value: 39.227000000000004
876
+ - type: ndcg_at_3
877
+ value: 26.921
878
+ - type: ndcg_at_5
879
+ value: 28.938000000000002
880
+ - type: precision_at_1
881
+ value: 22.953000000000003
882
+ - type: precision_at_10
883
+ value: 5.602
884
+ - type: precision_at_100
885
+ value: 0.9530000000000001
886
+ - type: precision_at_1000
887
+ value: 0.13899999999999998
888
+ - type: precision_at_3
889
+ value: 12.606
890
+ - type: precision_at_5
891
+ value: 9.119
892
+ - type: recall_at_1
893
+ value: 18.815
894
+ - type: recall_at_10
895
+ value: 41.574
896
+ - type: recall_at_100
897
+ value: 64.84400000000001
898
+ - type: recall_at_1000
899
+ value: 85.406
900
+ - type: recall_at_3
901
+ value: 29.694
902
+ - type: recall_at_5
903
+ value: 34.935
904
+ - task:
905
+ type: Retrieval
906
+ dataset:
907
+ type: BeIR/cqadupstack
908
+ name: MTEB CQADupstackUnixRetrieval
909
+ config: default
910
+ split: test
911
+ revision: None
912
+ metrics:
913
+ - type: map_at_1
914
+ value: 27.840999999999998
915
+ - type: map_at_10
916
+ value: 36.797999999999995
917
+ - type: map_at_100
918
+ value: 37.993
919
+ - type: map_at_1000
920
+ value: 38.086999999999996
921
+ - type: map_at_3
922
+ value: 34.050999999999995
923
+ - type: map_at_5
924
+ value: 35.379
925
+ - type: mrr_at_1
926
+ value: 32.649
927
+ - type: mrr_at_10
928
+ value: 41.025
929
+ - type: mrr_at_100
930
+ value: 41.878
931
+ - type: mrr_at_1000
932
+ value: 41.929
933
+ - type: mrr_at_3
934
+ value: 38.573
935
+ - type: mrr_at_5
936
+ value: 39.715
937
+ - type: ndcg_at_1
938
+ value: 32.649
939
+ - type: ndcg_at_10
940
+ value: 42.142
941
+ - type: ndcg_at_100
942
+ value: 47.558
943
+ - type: ndcg_at_1000
944
+ value: 49.643
945
+ - type: ndcg_at_3
946
+ value: 37.12
947
+ - type: ndcg_at_5
948
+ value: 38.983000000000004
949
+ - type: precision_at_1
950
+ value: 32.649
951
+ - type: precision_at_10
952
+ value: 7.08
953
+ - type: precision_at_100
954
+ value: 1.1039999999999999
955
+ - type: precision_at_1000
956
+ value: 0.13899999999999998
957
+ - type: precision_at_3
958
+ value: 16.698
959
+ - type: precision_at_5
960
+ value: 11.511000000000001
961
+ - type: recall_at_1
962
+ value: 27.840999999999998
963
+ - type: recall_at_10
964
+ value: 54.245
965
+ - type: recall_at_100
966
+ value: 77.947
967
+ - type: recall_at_1000
968
+ value: 92.36999999999999
969
+ - type: recall_at_3
970
+ value: 40.146
971
+ - type: recall_at_5
972
+ value: 44.951
973
+ - task:
974
+ type: Retrieval
975
+ dataset:
976
+ type: BeIR/cqadupstack
977
+ name: MTEB CQADupstackWebmastersRetrieval
978
+ config: default
979
+ split: test
980
+ revision: None
981
+ metrics:
982
+ - type: map_at_1
983
+ value: 26.529000000000003
984
+ - type: map_at_10
985
+ value: 35.010000000000005
986
+ - type: map_at_100
987
+ value: 36.647
988
+ - type: map_at_1000
989
+ value: 36.857
990
+ - type: map_at_3
991
+ value: 31.968000000000004
992
+ - type: map_at_5
993
+ value: 33.554
994
+ - type: mrr_at_1
995
+ value: 31.818
996
+ - type: mrr_at_10
997
+ value: 39.550999999999995
998
+ - type: mrr_at_100
999
+ value: 40.54
1000
+ - type: mrr_at_1000
1001
+ value: 40.596
1002
+ - type: mrr_at_3
1003
+ value: 36.726
1004
+ - type: mrr_at_5
1005
+ value: 38.416
1006
+ - type: ndcg_at_1
1007
+ value: 31.818
1008
+ - type: ndcg_at_10
1009
+ value: 40.675
1010
+ - type: ndcg_at_100
1011
+ value: 46.548
1012
+ - type: ndcg_at_1000
1013
+ value: 49.126
1014
+ - type: ndcg_at_3
1015
+ value: 35.829
1016
+ - type: ndcg_at_5
1017
+ value: 38.0
1018
+ - type: precision_at_1
1019
+ value: 31.818
1020
+ - type: precision_at_10
1021
+ value: 7.826
1022
+ - type: precision_at_100
1023
+ value: 1.538
1024
+ - type: precision_at_1000
1025
+ value: 0.24
1026
+ - type: precision_at_3
1027
+ value: 16.601
1028
+ - type: precision_at_5
1029
+ value: 12.095
1030
+ - type: recall_at_1
1031
+ value: 26.529000000000003
1032
+ - type: recall_at_10
1033
+ value: 51.03
1034
+ - type: recall_at_100
1035
+ value: 77.556
1036
+ - type: recall_at_1000
1037
+ value: 93.804
1038
+ - type: recall_at_3
1039
+ value: 36.986000000000004
1040
+ - type: recall_at_5
1041
+ value: 43.096000000000004
1042
+ - task:
1043
+ type: Retrieval
1044
+ dataset:
1045
+ type: BeIR/cqadupstack
1046
+ name: MTEB CQADupstackWordpressRetrieval
1047
+ config: default
1048
+ split: test
1049
+ revision: None
1050
+ metrics:
1051
+ - type: map_at_1
1052
+ value: 23.480999999999998
1053
+ - type: map_at_10
1054
+ value: 30.817
1055
+ - type: map_at_100
1056
+ value: 31.838
1057
+ - type: map_at_1000
1058
+ value: 31.932
1059
+ - type: map_at_3
1060
+ value: 28.011999999999997
1061
+ - type: map_at_5
1062
+ value: 29.668
1063
+ - type: mrr_at_1
1064
+ value: 25.323
1065
+ - type: mrr_at_10
1066
+ value: 33.072
1067
+ - type: mrr_at_100
1068
+ value: 33.926
1069
+ - type: mrr_at_1000
1070
+ value: 33.993
1071
+ - type: mrr_at_3
1072
+ value: 30.436999999999998
1073
+ - type: mrr_at_5
1074
+ value: 32.092
1075
+ - type: ndcg_at_1
1076
+ value: 25.323
1077
+ - type: ndcg_at_10
1078
+ value: 35.514
1079
+ - type: ndcg_at_100
1080
+ value: 40.489000000000004
1081
+ - type: ndcg_at_1000
1082
+ value: 42.908
1083
+ - type: ndcg_at_3
1084
+ value: 30.092000000000002
1085
+ - type: ndcg_at_5
1086
+ value: 32.989000000000004
1087
+ - type: precision_at_1
1088
+ value: 25.323
1089
+ - type: precision_at_10
1090
+ value: 5.545
1091
+ - type: precision_at_100
1092
+ value: 0.861
1093
+ - type: precision_at_1000
1094
+ value: 0.117
1095
+ - type: precision_at_3
1096
+ value: 12.446
1097
+ - type: precision_at_5
1098
+ value: 9.131
1099
+ - type: recall_at_1
1100
+ value: 23.480999999999998
1101
+ - type: recall_at_10
1102
+ value: 47.825
1103
+ - type: recall_at_100
1104
+ value: 70.652
1105
+ - type: recall_at_1000
1106
+ value: 88.612
1107
+ - type: recall_at_3
1108
+ value: 33.537
1109
+ - type: recall_at_5
1110
+ value: 40.542
1111
+ - task:
1112
+ type: Retrieval
1113
+ dataset:
1114
+ type: climate-fever
1115
+ name: MTEB ClimateFEVER
1116
+ config: default
1117
+ split: test
1118
+ revision: None
1119
+ metrics:
1120
+ - type: map_at_1
1121
+ value: 13.333999999999998
1122
+ - type: map_at_10
1123
+ value: 22.524
1124
+ - type: map_at_100
1125
+ value: 24.506
1126
+ - type: map_at_1000
1127
+ value: 24.715
1128
+ - type: map_at_3
1129
+ value: 19.022
1130
+ - type: map_at_5
1131
+ value: 20.693
1132
+ - type: mrr_at_1
1133
+ value: 29.186
1134
+ - type: mrr_at_10
1135
+ value: 41.22
1136
+ - type: mrr_at_100
1137
+ value: 42.16
1138
+ - type: mrr_at_1000
1139
+ value: 42.192
1140
+ - type: mrr_at_3
1141
+ value: 38.013000000000005
1142
+ - type: mrr_at_5
1143
+ value: 39.704
1144
+ - type: ndcg_at_1
1145
+ value: 29.186
1146
+ - type: ndcg_at_10
1147
+ value: 31.167
1148
+ - type: ndcg_at_100
1149
+ value: 38.879000000000005
1150
+ - type: ndcg_at_1000
1151
+ value: 42.376000000000005
1152
+ - type: ndcg_at_3
1153
+ value: 25.817
1154
+ - type: ndcg_at_5
1155
+ value: 27.377000000000002
1156
+ - type: precision_at_1
1157
+ value: 29.186
1158
+ - type: precision_at_10
1159
+ value: 9.693999999999999
1160
+ - type: precision_at_100
1161
+ value: 1.8030000000000002
1162
+ - type: precision_at_1000
1163
+ value: 0.246
1164
+ - type: precision_at_3
1165
+ value: 19.11
1166
+ - type: precision_at_5
1167
+ value: 14.344999999999999
1168
+ - type: recall_at_1
1169
+ value: 13.333999999999998
1170
+ - type: recall_at_10
1171
+ value: 37.092000000000006
1172
+ - type: recall_at_100
1173
+ value: 63.651
1174
+ - type: recall_at_1000
1175
+ value: 83.05
1176
+ - type: recall_at_3
1177
+ value: 23.74
1178
+ - type: recall_at_5
1179
+ value: 28.655
1180
+ - task:
1181
+ type: Retrieval
1182
+ dataset:
1183
+ type: dbpedia-entity
1184
+ name: MTEB DBPedia
1185
+ config: default
1186
+ split: test
1187
+ revision: None
1188
+ metrics:
1189
+ - type: map_at_1
1190
+ value: 9.151
1191
+ - type: map_at_10
1192
+ value: 19.653000000000002
1193
+ - type: map_at_100
1194
+ value: 28.053
1195
+ - type: map_at_1000
1196
+ value: 29.709000000000003
1197
+ - type: map_at_3
1198
+ value: 14.191
1199
+ - type: map_at_5
1200
+ value: 16.456
1201
+ - type: mrr_at_1
1202
+ value: 66.25
1203
+ - type: mrr_at_10
1204
+ value: 74.4
1205
+ - type: mrr_at_100
1206
+ value: 74.715
1207
+ - type: mrr_at_1000
1208
+ value: 74.726
1209
+ - type: mrr_at_3
1210
+ value: 72.417
1211
+ - type: mrr_at_5
1212
+ value: 73.667
1213
+ - type: ndcg_at_1
1214
+ value: 54.25
1215
+ - type: ndcg_at_10
1216
+ value: 40.77
1217
+ - type: ndcg_at_100
1218
+ value: 46.359
1219
+ - type: ndcg_at_1000
1220
+ value: 54.193000000000005
1221
+ - type: ndcg_at_3
1222
+ value: 44.832
1223
+ - type: ndcg_at_5
1224
+ value: 42.63
1225
+ - type: precision_at_1
1226
+ value: 66.25
1227
+ - type: precision_at_10
1228
+ value: 32.175
1229
+ - type: precision_at_100
1230
+ value: 10.668
1231
+ - type: precision_at_1000
1232
+ value: 2.067
1233
+ - type: precision_at_3
1234
+ value: 47.667
1235
+ - type: precision_at_5
1236
+ value: 41.3
1237
+ - type: recall_at_1
1238
+ value: 9.151
1239
+ - type: recall_at_10
1240
+ value: 25.003999999999998
1241
+ - type: recall_at_100
1242
+ value: 52.976
1243
+ - type: recall_at_1000
1244
+ value: 78.315
1245
+ - type: recall_at_3
1246
+ value: 15.487
1247
+ - type: recall_at_5
1248
+ value: 18.999
1249
+ - task:
1250
+ type: Classification
1251
+ dataset:
1252
+ type: mteb/emotion
1253
+ name: MTEB EmotionClassification
1254
+ config: default
1255
+ split: test
1256
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1257
+ metrics:
1258
+ - type: accuracy
1259
+ value: 51.89999999999999
1260
+ - type: f1
1261
+ value: 46.47777925067403
1262
+ - task:
1263
+ type: Retrieval
1264
+ dataset:
1265
+ type: fever
1266
+ name: MTEB FEVER
1267
+ config: default
1268
+ split: test
1269
+ revision: None
1270
+ metrics:
1271
+ - type: map_at_1
1272
+ value: 73.706
1273
+ - type: map_at_10
1274
+ value: 82.423
1275
+ - type: map_at_100
1276
+ value: 82.67999999999999
1277
+ - type: map_at_1000
1278
+ value: 82.694
1279
+ - type: map_at_3
1280
+ value: 81.328
1281
+ - type: map_at_5
1282
+ value: 82.001
1283
+ - type: mrr_at_1
1284
+ value: 79.613
1285
+ - type: mrr_at_10
1286
+ value: 87.07000000000001
1287
+ - type: mrr_at_100
1288
+ value: 87.169
1289
+ - type: mrr_at_1000
1290
+ value: 87.17
1291
+ - type: mrr_at_3
1292
+ value: 86.404
1293
+ - type: mrr_at_5
1294
+ value: 86.856
1295
+ - type: ndcg_at_1
1296
+ value: 79.613
1297
+ - type: ndcg_at_10
1298
+ value: 86.289
1299
+ - type: ndcg_at_100
1300
+ value: 87.201
1301
+ - type: ndcg_at_1000
1302
+ value: 87.428
1303
+ - type: ndcg_at_3
1304
+ value: 84.625
1305
+ - type: ndcg_at_5
1306
+ value: 85.53699999999999
1307
+ - type: precision_at_1
1308
+ value: 79.613
1309
+ - type: precision_at_10
1310
+ value: 10.399
1311
+ - type: precision_at_100
1312
+ value: 1.1079999999999999
1313
+ - type: precision_at_1000
1314
+ value: 0.11499999999999999
1315
+ - type: precision_at_3
1316
+ value: 32.473
1317
+ - type: precision_at_5
1318
+ value: 20.132
1319
+ - type: recall_at_1
1320
+ value: 73.706
1321
+ - type: recall_at_10
1322
+ value: 93.559
1323
+ - type: recall_at_100
1324
+ value: 97.188
1325
+ - type: recall_at_1000
1326
+ value: 98.555
1327
+ - type: recall_at_3
1328
+ value: 88.98700000000001
1329
+ - type: recall_at_5
1330
+ value: 91.373
1331
+ - task:
1332
+ type: Retrieval
1333
+ dataset:
1334
+ type: fiqa
1335
+ name: MTEB FiQA2018
1336
+ config: default
1337
+ split: test
1338
+ revision: None
1339
+ metrics:
1340
+ - type: map_at_1
1341
+ value: 19.841
1342
+ - type: map_at_10
1343
+ value: 32.643
1344
+ - type: map_at_100
1345
+ value: 34.575
1346
+ - type: map_at_1000
1347
+ value: 34.736
1348
+ - type: map_at_3
1349
+ value: 28.317999999999998
1350
+ - type: map_at_5
1351
+ value: 30.964000000000002
1352
+ - type: mrr_at_1
1353
+ value: 39.660000000000004
1354
+ - type: mrr_at_10
1355
+ value: 48.620000000000005
1356
+ - type: mrr_at_100
1357
+ value: 49.384
1358
+ - type: mrr_at_1000
1359
+ value: 49.415
1360
+ - type: mrr_at_3
1361
+ value: 45.988
1362
+ - type: mrr_at_5
1363
+ value: 47.361
1364
+ - type: ndcg_at_1
1365
+ value: 39.660000000000004
1366
+ - type: ndcg_at_10
1367
+ value: 40.646
1368
+ - type: ndcg_at_100
1369
+ value: 47.657
1370
+ - type: ndcg_at_1000
1371
+ value: 50.428
1372
+ - type: ndcg_at_3
1373
+ value: 36.689
1374
+ - type: ndcg_at_5
1375
+ value: 38.211
1376
+ - type: precision_at_1
1377
+ value: 39.660000000000004
1378
+ - type: precision_at_10
1379
+ value: 11.235000000000001
1380
+ - type: precision_at_100
1381
+ value: 1.8530000000000002
1382
+ - type: precision_at_1000
1383
+ value: 0.23600000000000002
1384
+ - type: precision_at_3
1385
+ value: 24.587999999999997
1386
+ - type: precision_at_5
1387
+ value: 18.395
1388
+ - type: recall_at_1
1389
+ value: 19.841
1390
+ - type: recall_at_10
1391
+ value: 48.135
1392
+ - type: recall_at_100
1393
+ value: 74.224
1394
+ - type: recall_at_1000
1395
+ value: 90.826
1396
+ - type: recall_at_3
1397
+ value: 33.536
1398
+ - type: recall_at_5
1399
+ value: 40.311
1400
+ - task:
1401
+ type: Retrieval
1402
+ dataset:
1403
+ type: hotpotqa
1404
+ name: MTEB HotpotQA
1405
+ config: default
1406
+ split: test
1407
+ revision: None
1408
+ metrics:
1409
+ - type: map_at_1
1410
+ value: 40.358
1411
+ - type: map_at_10
1412
+ value: 64.497
1413
+ - type: map_at_100
1414
+ value: 65.362
1415
+ - type: map_at_1000
1416
+ value: 65.41900000000001
1417
+ - type: map_at_3
1418
+ value: 61.06700000000001
1419
+ - type: map_at_5
1420
+ value: 63.317
1421
+ - type: mrr_at_1
1422
+ value: 80.716
1423
+ - type: mrr_at_10
1424
+ value: 86.10799999999999
1425
+ - type: mrr_at_100
1426
+ value: 86.265
1427
+ - type: mrr_at_1000
1428
+ value: 86.27
1429
+ - type: mrr_at_3
1430
+ value: 85.271
1431
+ - type: mrr_at_5
1432
+ value: 85.82499999999999
1433
+ - type: ndcg_at_1
1434
+ value: 80.716
1435
+ - type: ndcg_at_10
1436
+ value: 72.597
1437
+ - type: ndcg_at_100
1438
+ value: 75.549
1439
+ - type: ndcg_at_1000
1440
+ value: 76.61
1441
+ - type: ndcg_at_3
1442
+ value: 67.874
1443
+ - type: ndcg_at_5
1444
+ value: 70.655
1445
+ - type: precision_at_1
1446
+ value: 80.716
1447
+ - type: precision_at_10
1448
+ value: 15.148
1449
+ - type: precision_at_100
1450
+ value: 1.745
1451
+ - type: precision_at_1000
1452
+ value: 0.188
1453
+ - type: precision_at_3
1454
+ value: 43.597
1455
+ - type: precision_at_5
1456
+ value: 28.351
1457
+ - type: recall_at_1
1458
+ value: 40.358
1459
+ - type: recall_at_10
1460
+ value: 75.739
1461
+ - type: recall_at_100
1462
+ value: 87.259
1463
+ - type: recall_at_1000
1464
+ value: 94.234
1465
+ - type: recall_at_3
1466
+ value: 65.39500000000001
1467
+ - type: recall_at_5
1468
+ value: 70.878
1469
+ - task:
1470
+ type: Classification
1471
+ dataset:
1472
+ type: mteb/imdb
1473
+ name: MTEB ImdbClassification
1474
+ config: default
1475
+ split: test
1476
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1477
+ metrics:
1478
+ - type: accuracy
1479
+ value: 90.80799999999998
1480
+ - type: ap
1481
+ value: 86.81350378180757
1482
+ - type: f1
1483
+ value: 90.79901248314215
1484
+ - task:
1485
+ type: Retrieval
1486
+ dataset:
1487
+ type: msmarco
1488
+ name: MTEB MSMARCO
1489
+ config: default
1490
+ split: dev
1491
+ revision: None
1492
+ metrics:
1493
+ - type: map_at_1
1494
+ value: 22.096
1495
+ - type: map_at_10
1496
+ value: 34.384
1497
+ - type: map_at_100
1498
+ value: 35.541
1499
+ - type: map_at_1000
1500
+ value: 35.589999999999996
1501
+ - type: map_at_3
1502
+ value: 30.496000000000002
1503
+ - type: map_at_5
1504
+ value: 32.718
1505
+ - type: mrr_at_1
1506
+ value: 22.750999999999998
1507
+ - type: mrr_at_10
1508
+ value: 35.024
1509
+ - type: mrr_at_100
1510
+ value: 36.125
1511
+ - type: mrr_at_1000
1512
+ value: 36.168
1513
+ - type: mrr_at_3
1514
+ value: 31.225
1515
+ - type: mrr_at_5
1516
+ value: 33.416000000000004
1517
+ - type: ndcg_at_1
1518
+ value: 22.750999999999998
1519
+ - type: ndcg_at_10
1520
+ value: 41.351
1521
+ - type: ndcg_at_100
1522
+ value: 46.92
1523
+ - type: ndcg_at_1000
1524
+ value: 48.111
1525
+ - type: ndcg_at_3
1526
+ value: 33.439
1527
+ - type: ndcg_at_5
1528
+ value: 37.407000000000004
1529
+ - type: precision_at_1
1530
+ value: 22.750999999999998
1531
+ - type: precision_at_10
1532
+ value: 6.564
1533
+ - type: precision_at_100
1534
+ value: 0.935
1535
+ - type: precision_at_1000
1536
+ value: 0.104
1537
+ - type: precision_at_3
1538
+ value: 14.288
1539
+ - type: precision_at_5
1540
+ value: 10.581999999999999
1541
+ - type: recall_at_1
1542
+ value: 22.096
1543
+ - type: recall_at_10
1544
+ value: 62.771
1545
+ - type: recall_at_100
1546
+ value: 88.529
1547
+ - type: recall_at_1000
1548
+ value: 97.55
1549
+ - type: recall_at_3
1550
+ value: 41.245
1551
+ - type: recall_at_5
1552
+ value: 50.788
1553
+ - task:
1554
+ type: Classification
1555
+ dataset:
1556
+ type: mteb/mtop_domain
1557
+ name: MTEB MTOPDomainClassification (en)
1558
+ config: en
1559
+ split: test
1560
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1561
+ metrics:
1562
+ - type: accuracy
1563
+ value: 94.16780665754673
1564
+ - type: f1
1565
+ value: 93.96331194859894
1566
+ - task:
1567
+ type: Classification
1568
+ dataset:
1569
+ type: mteb/mtop_intent
1570
+ name: MTEB MTOPIntentClassification (en)
1571
+ config: en
1572
+ split: test
1573
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1574
+ metrics:
1575
+ - type: accuracy
1576
+ value: 76.90606475148198
1577
+ - type: f1
1578
+ value: 58.58344986604187
1579
+ - task:
1580
+ type: Classification
1581
+ dataset:
1582
+ type: mteb/amazon_massive_intent
1583
+ name: MTEB MassiveIntentClassification (en)
1584
+ config: en
1585
+ split: test
1586
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1587
+ metrics:
1588
+ - type: accuracy
1589
+ value: 76.14660390047075
1590
+ - type: f1
1591
+ value: 74.31533923533614
1592
+ - task:
1593
+ type: Classification
1594
+ dataset:
1595
+ type: mteb/amazon_massive_scenario
1596
+ name: MTEB MassiveScenarioClassification (en)
1597
+ config: en
1598
+ split: test
1599
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1600
+ metrics:
1601
+ - type: accuracy
1602
+ value: 80.16139878950908
1603
+ - type: f1
1604
+ value: 80.18532656824924
1605
+ - task:
1606
+ type: Clustering
1607
+ dataset:
1608
+ type: mteb/medrxiv-clustering-p2p
1609
+ name: MTEB MedrxivClusteringP2P
1610
+ config: default
1611
+ split: test
1612
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1613
+ metrics:
1614
+ - type: v_measure
1615
+ value: 32.949880906135085
1616
+ - task:
1617
+ type: Clustering
1618
+ dataset:
1619
+ type: mteb/medrxiv-clustering-s2s
1620
+ name: MTEB MedrxivClusteringS2S
1621
+ config: default
1622
+ split: test
1623
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1624
+ metrics:
1625
+ - type: v_measure
1626
+ value: 31.56300351524862
1627
+ - task:
1628
+ type: Reranking
1629
+ dataset:
1630
+ type: mteb/mind_small
1631
+ name: MTEB MindSmallReranking
1632
+ config: default
1633
+ split: test
1634
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1635
+ metrics:
1636
+ - type: map
1637
+ value: 31.196521894371315
1638
+ - type: mrr
1639
+ value: 32.22644231694389
1640
+ - task:
1641
+ type: Retrieval
1642
+ dataset:
1643
+ type: nfcorpus
1644
+ name: MTEB NFCorpus
1645
+ config: default
1646
+ split: test
1647
+ revision: None
1648
+ metrics:
1649
+ - type: map_at_1
1650
+ value: 6.783
1651
+ - type: map_at_10
1652
+ value: 14.549000000000001
1653
+ - type: map_at_100
1654
+ value: 18.433
1655
+ - type: map_at_1000
1656
+ value: 19.949
1657
+ - type: map_at_3
1658
+ value: 10.936
1659
+ - type: map_at_5
1660
+ value: 12.514
1661
+ - type: mrr_at_1
1662
+ value: 47.368
1663
+ - type: mrr_at_10
1664
+ value: 56.42
1665
+ - type: mrr_at_100
1666
+ value: 56.908
1667
+ - type: mrr_at_1000
1668
+ value: 56.95
1669
+ - type: mrr_at_3
1670
+ value: 54.283
1671
+ - type: mrr_at_5
1672
+ value: 55.568
1673
+ - type: ndcg_at_1
1674
+ value: 45.666000000000004
1675
+ - type: ndcg_at_10
1676
+ value: 37.389
1677
+ - type: ndcg_at_100
1678
+ value: 34.253
1679
+ - type: ndcg_at_1000
1680
+ value: 43.059999999999995
1681
+ - type: ndcg_at_3
1682
+ value: 42.725
1683
+ - type: ndcg_at_5
1684
+ value: 40.193
1685
+ - type: precision_at_1
1686
+ value: 47.368
1687
+ - type: precision_at_10
1688
+ value: 27.988000000000003
1689
+ - type: precision_at_100
1690
+ value: 8.672
1691
+ - type: precision_at_1000
1692
+ value: 2.164
1693
+ - type: precision_at_3
1694
+ value: 40.248
1695
+ - type: precision_at_5
1696
+ value: 34.737
1697
+ - type: recall_at_1
1698
+ value: 6.783
1699
+ - type: recall_at_10
1700
+ value: 17.838
1701
+ - type: recall_at_100
1702
+ value: 33.672000000000004
1703
+ - type: recall_at_1000
1704
+ value: 66.166
1705
+ - type: recall_at_3
1706
+ value: 11.849
1707
+ - type: recall_at_5
1708
+ value: 14.205000000000002
1709
+ - task:
1710
+ type: Retrieval
1711
+ dataset:
1712
+ type: nq
1713
+ name: MTEB NQ
1714
+ config: default
1715
+ split: test
1716
+ revision: None
1717
+ metrics:
1718
+ - type: map_at_1
1719
+ value: 31.698999999999998
1720
+ - type: map_at_10
1721
+ value: 46.556
1722
+ - type: map_at_100
1723
+ value: 47.652
1724
+ - type: map_at_1000
1725
+ value: 47.68
1726
+ - type: map_at_3
1727
+ value: 42.492000000000004
1728
+ - type: map_at_5
1729
+ value: 44.763999999999996
1730
+ - type: mrr_at_1
1731
+ value: 35.747
1732
+ - type: mrr_at_10
1733
+ value: 49.242999999999995
1734
+ - type: mrr_at_100
1735
+ value: 50.052
1736
+ - type: mrr_at_1000
1737
+ value: 50.068
1738
+ - type: mrr_at_3
1739
+ value: 45.867000000000004
1740
+ - type: mrr_at_5
1741
+ value: 47.778999999999996
1742
+ - type: ndcg_at_1
1743
+ value: 35.717999999999996
1744
+ - type: ndcg_at_10
1745
+ value: 54.14600000000001
1746
+ - type: ndcg_at_100
1747
+ value: 58.672999999999995
1748
+ - type: ndcg_at_1000
1749
+ value: 59.279
1750
+ - type: ndcg_at_3
1751
+ value: 46.407
1752
+ - type: ndcg_at_5
1753
+ value: 50.181
1754
+ - type: precision_at_1
1755
+ value: 35.717999999999996
1756
+ - type: precision_at_10
1757
+ value: 8.844000000000001
1758
+ - type: precision_at_100
1759
+ value: 1.139
1760
+ - type: precision_at_1000
1761
+ value: 0.12
1762
+ - type: precision_at_3
1763
+ value: 20.993000000000002
1764
+ - type: precision_at_5
1765
+ value: 14.791000000000002
1766
+ - type: recall_at_1
1767
+ value: 31.698999999999998
1768
+ - type: recall_at_10
1769
+ value: 74.693
1770
+ - type: recall_at_100
1771
+ value: 94.15299999999999
1772
+ - type: recall_at_1000
1773
+ value: 98.585
1774
+ - type: recall_at_3
1775
+ value: 54.388999999999996
1776
+ - type: recall_at_5
1777
+ value: 63.08200000000001
1778
+ - task:
1779
+ type: Retrieval
1780
+ dataset:
1781
+ type: quora
1782
+ name: MTEB QuoraRetrieval
1783
+ config: default
1784
+ split: test
1785
+ revision: None
1786
+ metrics:
1787
+ - type: map_at_1
1788
+ value: 71.283
1789
+ - type: map_at_10
1790
+ value: 85.24000000000001
1791
+ - type: map_at_100
1792
+ value: 85.882
1793
+ - type: map_at_1000
1794
+ value: 85.897
1795
+ - type: map_at_3
1796
+ value: 82.326
1797
+ - type: map_at_5
1798
+ value: 84.177
1799
+ - type: mrr_at_1
1800
+ value: 82.21000000000001
1801
+ - type: mrr_at_10
1802
+ value: 88.228
1803
+ - type: mrr_at_100
1804
+ value: 88.32
1805
+ - type: mrr_at_1000
1806
+ value: 88.32
1807
+ - type: mrr_at_3
1808
+ value: 87.323
1809
+ - type: mrr_at_5
1810
+ value: 87.94800000000001
1811
+ - type: ndcg_at_1
1812
+ value: 82.17999999999999
1813
+ - type: ndcg_at_10
1814
+ value: 88.9
1815
+ - type: ndcg_at_100
1816
+ value: 90.079
1817
+ - type: ndcg_at_1000
1818
+ value: 90.158
1819
+ - type: ndcg_at_3
1820
+ value: 86.18299999999999
1821
+ - type: ndcg_at_5
1822
+ value: 87.71799999999999
1823
+ - type: precision_at_1
1824
+ value: 82.17999999999999
1825
+ - type: precision_at_10
1826
+ value: 13.464
1827
+ - type: precision_at_100
1828
+ value: 1.533
1829
+ - type: precision_at_1000
1830
+ value: 0.157
1831
+ - type: precision_at_3
1832
+ value: 37.693
1833
+ - type: precision_at_5
1834
+ value: 24.792
1835
+ - type: recall_at_1
1836
+ value: 71.283
1837
+ - type: recall_at_10
1838
+ value: 95.742
1839
+ - type: recall_at_100
1840
+ value: 99.67200000000001
1841
+ - type: recall_at_1000
1842
+ value: 99.981
1843
+ - type: recall_at_3
1844
+ value: 87.888
1845
+ - type: recall_at_5
1846
+ value: 92.24
1847
+ - task:
1848
+ type: Clustering
1849
+ dataset:
1850
+ type: mteb/reddit-clustering
1851
+ name: MTEB RedditClustering
1852
+ config: default
1853
+ split: test
1854
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1855
+ metrics:
1856
+ - type: v_measure
1857
+ value: 56.24267063669042
1858
+ - task:
1859
+ type: Clustering
1860
+ dataset:
1861
+ type: mteb/reddit-clustering-p2p
1862
+ name: MTEB RedditClusteringP2P
1863
+ config: default
1864
+ split: test
1865
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1866
+ metrics:
1867
+ - type: v_measure
1868
+ value: 62.88056988932578
1869
+ - task:
1870
+ type: Retrieval
1871
+ dataset:
1872
+ type: scidocs
1873
+ name: MTEB SCIDOCS
1874
+ config: default
1875
+ split: test
1876
+ revision: None
1877
+ metrics:
1878
+ - type: map_at_1
1879
+ value: 4.903
1880
+ - type: map_at_10
1881
+ value: 13.202
1882
+ - type: map_at_100
1883
+ value: 15.5
1884
+ - type: map_at_1000
1885
+ value: 15.870999999999999
1886
+ - type: map_at_3
1887
+ value: 9.407
1888
+ - type: map_at_5
1889
+ value: 11.238
1890
+ - type: mrr_at_1
1891
+ value: 24.2
1892
+ - type: mrr_at_10
1893
+ value: 35.867
1894
+ - type: mrr_at_100
1895
+ value: 37.001
1896
+ - type: mrr_at_1000
1897
+ value: 37.043
1898
+ - type: mrr_at_3
1899
+ value: 32.5
1900
+ - type: mrr_at_5
1901
+ value: 34.35
1902
+ - type: ndcg_at_1
1903
+ value: 24.2
1904
+ - type: ndcg_at_10
1905
+ value: 21.731
1906
+ - type: ndcg_at_100
1907
+ value: 30.7
1908
+ - type: ndcg_at_1000
1909
+ value: 36.618
1910
+ - type: ndcg_at_3
1911
+ value: 20.72
1912
+ - type: ndcg_at_5
1913
+ value: 17.954
1914
+ - type: precision_at_1
1915
+ value: 24.2
1916
+ - type: precision_at_10
1917
+ value: 11.33
1918
+ - type: precision_at_100
1919
+ value: 2.4410000000000003
1920
+ - type: precision_at_1000
1921
+ value: 0.386
1922
+ - type: precision_at_3
1923
+ value: 19.667
1924
+ - type: precision_at_5
1925
+ value: 15.86
1926
+ - type: recall_at_1
1927
+ value: 4.903
1928
+ - type: recall_at_10
1929
+ value: 22.962
1930
+ - type: recall_at_100
1931
+ value: 49.563
1932
+ - type: recall_at_1000
1933
+ value: 78.238
1934
+ - type: recall_at_3
1935
+ value: 11.953
1936
+ - type: recall_at_5
1937
+ value: 16.067999999999998
1938
+ - task:
1939
+ type: STS
1940
+ dataset:
1941
+ type: mteb/sickr-sts
1942
+ name: MTEB SICK-R
1943
+ config: default
1944
+ split: test
1945
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1946
+ metrics:
1947
+ - type: cos_sim_pearson
1948
+ value: 84.12694254604078
1949
+ - type: cos_sim_spearman
1950
+ value: 80.30141815181918
1951
+ - type: euclidean_pearson
1952
+ value: 81.34015449877128
1953
+ - type: euclidean_spearman
1954
+ value: 80.13984197010849
1955
+ - type: manhattan_pearson
1956
+ value: 81.31767068124086
1957
+ - type: manhattan_spearman
1958
+ value: 80.11720513114103
1959
+ - task:
1960
+ type: STS
1961
+ dataset:
1962
+ type: mteb/sts12-sts
1963
+ name: MTEB STS12
1964
+ config: default
1965
+ split: test
1966
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1967
+ metrics:
1968
+ - type: cos_sim_pearson
1969
+ value: 86.13112984010417
1970
+ - type: cos_sim_spearman
1971
+ value: 78.03063573402875
1972
+ - type: euclidean_pearson
1973
+ value: 83.51928418844804
1974
+ - type: euclidean_spearman
1975
+ value: 78.4045235411144
1976
+ - type: manhattan_pearson
1977
+ value: 83.49981637388689
1978
+ - type: manhattan_spearman
1979
+ value: 78.4042575139372
1980
+ - task:
1981
+ type: STS
1982
+ dataset:
1983
+ type: mteb/sts13-sts
1984
+ name: MTEB STS13
1985
+ config: default
1986
+ split: test
1987
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1988
+ metrics:
1989
+ - type: cos_sim_pearson
1990
+ value: 82.50327987379504
1991
+ - type: cos_sim_spearman
1992
+ value: 84.18556767756205
1993
+ - type: euclidean_pearson
1994
+ value: 82.69684424327679
1995
+ - type: euclidean_spearman
1996
+ value: 83.5368106038335
1997
+ - type: manhattan_pearson
1998
+ value: 82.57967581007374
1999
+ - type: manhattan_spearman
2000
+ value: 83.43009053133697
2001
+ - task:
2002
+ type: STS
2003
+ dataset:
2004
+ type: mteb/sts14-sts
2005
+ name: MTEB STS14
2006
+ config: default
2007
+ split: test
2008
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2009
+ metrics:
2010
+ - type: cos_sim_pearson
2011
+ value: 82.50756863007814
2012
+ - type: cos_sim_spearman
2013
+ value: 82.27204331279108
2014
+ - type: euclidean_pearson
2015
+ value: 81.39535251429741
2016
+ - type: euclidean_spearman
2017
+ value: 81.84386626336239
2018
+ - type: manhattan_pearson
2019
+ value: 81.34281737280695
2020
+ - type: manhattan_spearman
2021
+ value: 81.81149375673166
2022
+ - task:
2023
+ type: STS
2024
+ dataset:
2025
+ type: mteb/sts15-sts
2026
+ name: MTEB STS15
2027
+ config: default
2028
+ split: test
2029
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2030
+ metrics:
2031
+ - type: cos_sim_pearson
2032
+ value: 86.8727714856726
2033
+ - type: cos_sim_spearman
2034
+ value: 87.95738287792312
2035
+ - type: euclidean_pearson
2036
+ value: 86.62920602795887
2037
+ - type: euclidean_spearman
2038
+ value: 87.05207355381243
2039
+ - type: manhattan_pearson
2040
+ value: 86.53587918472225
2041
+ - type: manhattan_spearman
2042
+ value: 86.95382961029586
2043
+ - task:
2044
+ type: STS
2045
+ dataset:
2046
+ type: mteb/sts16-sts
2047
+ name: MTEB STS16
2048
+ config: default
2049
+ split: test
2050
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2051
+ metrics:
2052
+ - type: cos_sim_pearson
2053
+ value: 83.52240359769479
2054
+ - type: cos_sim_spearman
2055
+ value: 85.47685776238286
2056
+ - type: euclidean_pearson
2057
+ value: 84.25815333483058
2058
+ - type: euclidean_spearman
2059
+ value: 85.27415639683198
2060
+ - type: manhattan_pearson
2061
+ value: 84.29127757025637
2062
+ - type: manhattan_spearman
2063
+ value: 85.30226224917351
2064
+ - task:
2065
+ type: STS
2066
+ dataset:
2067
+ type: mteb/sts17-crosslingual-sts
2068
+ name: MTEB STS17 (en-en)
2069
+ config: en-en
2070
+ split: test
2071
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2072
+ metrics:
2073
+ - type: cos_sim_pearson
2074
+ value: 86.42501708915708
2075
+ - type: cos_sim_spearman
2076
+ value: 86.42276182795041
2077
+ - type: euclidean_pearson
2078
+ value: 86.5408207354761
2079
+ - type: euclidean_spearman
2080
+ value: 85.46096321750838
2081
+ - type: manhattan_pearson
2082
+ value: 86.54177303026881
2083
+ - type: manhattan_spearman
2084
+ value: 85.50313151916117
2085
+ - task:
2086
+ type: STS
2087
+ dataset:
2088
+ type: mteb/sts22-crosslingual-sts
2089
+ name: MTEB STS22 (en)
2090
+ config: en
2091
+ split: test
2092
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2093
+ metrics:
2094
+ - type: cos_sim_pearson
2095
+ value: 64.86521089250766
2096
+ - type: cos_sim_spearman
2097
+ value: 65.94868540323003
2098
+ - type: euclidean_pearson
2099
+ value: 67.16569626533084
2100
+ - type: euclidean_spearman
2101
+ value: 66.37667004134917
2102
+ - type: manhattan_pearson
2103
+ value: 67.1482365102333
2104
+ - type: manhattan_spearman
2105
+ value: 66.53240122580029
2106
+ - task:
2107
+ type: STS
2108
+ dataset:
2109
+ type: mteb/stsbenchmark-sts
2110
+ name: MTEB STSBenchmark
2111
+ config: default
2112
+ split: test
2113
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2114
+ metrics:
2115
+ - type: cos_sim_pearson
2116
+ value: 84.64746265365318
2117
+ - type: cos_sim_spearman
2118
+ value: 86.41888825906786
2119
+ - type: euclidean_pearson
2120
+ value: 85.27453642725811
2121
+ - type: euclidean_spearman
2122
+ value: 85.94095796602544
2123
+ - type: manhattan_pearson
2124
+ value: 85.28643660505334
2125
+ - type: manhattan_spearman
2126
+ value: 85.95028003260744
2127
+ - task:
2128
+ type: Reranking
2129
+ dataset:
2130
+ type: mteb/scidocs-reranking
2131
+ name: MTEB SciDocsRR
2132
+ config: default
2133
+ split: test
2134
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2135
+ metrics:
2136
+ - type: map
2137
+ value: 87.48903153618527
2138
+ - type: mrr
2139
+ value: 96.41081503826601
2140
+ - task:
2141
+ type: Retrieval
2142
+ dataset:
2143
+ type: scifact
2144
+ name: MTEB SciFact
2145
+ config: default
2146
+ split: test
2147
+ revision: None
2148
+ metrics:
2149
+ - type: map_at_1
2150
+ value: 58.594
2151
+ - type: map_at_10
2152
+ value: 69.296
2153
+ - type: map_at_100
2154
+ value: 69.782
2155
+ - type: map_at_1000
2156
+ value: 69.795
2157
+ - type: map_at_3
2158
+ value: 66.23
2159
+ - type: map_at_5
2160
+ value: 68.293
2161
+ - type: mrr_at_1
2162
+ value: 61.667
2163
+ - type: mrr_at_10
2164
+ value: 70.339
2165
+ - type: mrr_at_100
2166
+ value: 70.708
2167
+ - type: mrr_at_1000
2168
+ value: 70.722
2169
+ - type: mrr_at_3
2170
+ value: 68.0
2171
+ - type: mrr_at_5
2172
+ value: 69.56700000000001
2173
+ - type: ndcg_at_1
2174
+ value: 61.667
2175
+ - type: ndcg_at_10
2176
+ value: 74.039
2177
+ - type: ndcg_at_100
2178
+ value: 76.103
2179
+ - type: ndcg_at_1000
2180
+ value: 76.47800000000001
2181
+ - type: ndcg_at_3
2182
+ value: 68.967
2183
+ - type: ndcg_at_5
2184
+ value: 71.96900000000001
2185
+ - type: precision_at_1
2186
+ value: 61.667
2187
+ - type: precision_at_10
2188
+ value: 9.866999999999999
2189
+ - type: precision_at_100
2190
+ value: 1.097
2191
+ - type: precision_at_1000
2192
+ value: 0.11299999999999999
2193
+ - type: precision_at_3
2194
+ value: 27.111
2195
+ - type: precision_at_5
2196
+ value: 18.2
2197
+ - type: recall_at_1
2198
+ value: 58.594
2199
+ - type: recall_at_10
2200
+ value: 87.422
2201
+ - type: recall_at_100
2202
+ value: 96.667
2203
+ - type: recall_at_1000
2204
+ value: 99.667
2205
+ - type: recall_at_3
2206
+ value: 74.217
2207
+ - type: recall_at_5
2208
+ value: 81.539
2209
+ - task:
2210
+ type: PairClassification
2211
+ dataset:
2212
+ type: mteb/sprintduplicatequestions-pairclassification
2213
+ name: MTEB SprintDuplicateQuestions
2214
+ config: default
2215
+ split: test
2216
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2217
+ metrics:
2218
+ - type: cos_sim_accuracy
2219
+ value: 99.85049504950496
2220
+ - type: cos_sim_ap
2221
+ value: 96.33111544137081
2222
+ - type: cos_sim_f1
2223
+ value: 92.35443037974684
2224
+ - type: cos_sim_precision
2225
+ value: 93.53846153846153
2226
+ - type: cos_sim_recall
2227
+ value: 91.2
2228
+ - type: dot_accuracy
2229
+ value: 99.82376237623762
2230
+ - type: dot_ap
2231
+ value: 95.38082527310888
2232
+ - type: dot_f1
2233
+ value: 90.90909090909092
2234
+ - type: dot_precision
2235
+ value: 92.90187891440502
2236
+ - type: dot_recall
2237
+ value: 89.0
2238
+ - type: euclidean_accuracy
2239
+ value: 99.84851485148515
2240
+ - type: euclidean_ap
2241
+ value: 96.32316003996347
2242
+ - type: euclidean_f1
2243
+ value: 92.2071392659628
2244
+ - type: euclidean_precision
2245
+ value: 92.71991911021233
2246
+ - type: euclidean_recall
2247
+ value: 91.7
2248
+ - type: manhattan_accuracy
2249
+ value: 99.84851485148515
2250
+ - type: manhattan_ap
2251
+ value: 96.3655668249217
2252
+ - type: manhattan_f1
2253
+ value: 92.18356026222895
2254
+ - type: manhattan_precision
2255
+ value: 92.98067141403867
2256
+ - type: manhattan_recall
2257
+ value: 91.4
2258
+ - type: max_accuracy
2259
+ value: 99.85049504950496
2260
+ - type: max_ap
2261
+ value: 96.3655668249217
2262
+ - type: max_f1
2263
+ value: 92.35443037974684
2264
+ - task:
2265
+ type: Clustering
2266
+ dataset:
2267
+ type: mteb/stackexchange-clustering
2268
+ name: MTEB StackExchangeClustering
2269
+ config: default
2270
+ split: test
2271
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2272
+ metrics:
2273
+ - type: v_measure
2274
+ value: 65.94861371629051
2275
+ - task:
2276
+ type: Clustering
2277
+ dataset:
2278
+ type: mteb/stackexchange-clustering-p2p
2279
+ name: MTEB StackExchangeClusteringP2P
2280
+ config: default
2281
+ split: test
2282
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2283
+ metrics:
2284
+ - type: v_measure
2285
+ value: 35.009430451385
2286
+ - task:
2287
+ type: Reranking
2288
+ dataset:
2289
+ type: mteb/stackoverflowdupquestions-reranking
2290
+ name: MTEB StackOverflowDupQuestions
2291
+ config: default
2292
+ split: test
2293
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2294
+ metrics:
2295
+ - type: map
2296
+ value: 54.61164066427969
2297
+ - type: mrr
2298
+ value: 55.49710603938544
2299
+ - task:
2300
+ type: Summarization
2301
+ dataset:
2302
+ type: mteb/summeval
2303
+ name: MTEB SummEval
2304
+ config: default
2305
+ split: test
2306
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2307
+ metrics:
2308
+ - type: cos_sim_pearson
2309
+ value: 30.622620124907662
2310
+ - type: cos_sim_spearman
2311
+ value: 31.0678351356163
2312
+ - type: dot_pearson
2313
+ value: 30.863727693306814
2314
+ - type: dot_spearman
2315
+ value: 31.230306567021255
2316
+ - task:
2317
+ type: Retrieval
2318
+ dataset:
2319
+ type: trec-covid
2320
+ name: MTEB TRECCOVID
2321
+ config: default
2322
+ split: test
2323
+ revision: None
2324
+ metrics:
2325
+ - type: map_at_1
2326
+ value: 0.22
2327
+ - type: map_at_10
2328
+ value: 2.011
2329
+ - type: map_at_100
2330
+ value: 10.974
2331
+ - type: map_at_1000
2332
+ value: 25.819
2333
+ - type: map_at_3
2334
+ value: 0.6649999999999999
2335
+ - type: map_at_5
2336
+ value: 1.076
2337
+ - type: mrr_at_1
2338
+ value: 86.0
2339
+ - type: mrr_at_10
2340
+ value: 91.8
2341
+ - type: mrr_at_100
2342
+ value: 91.8
2343
+ - type: mrr_at_1000
2344
+ value: 91.8
2345
+ - type: mrr_at_3
2346
+ value: 91.0
2347
+ - type: mrr_at_5
2348
+ value: 91.8
2349
+ - type: ndcg_at_1
2350
+ value: 82.0
2351
+ - type: ndcg_at_10
2352
+ value: 78.07300000000001
2353
+ - type: ndcg_at_100
2354
+ value: 58.231
2355
+ - type: ndcg_at_1000
2356
+ value: 51.153000000000006
2357
+ - type: ndcg_at_3
2358
+ value: 81.123
2359
+ - type: ndcg_at_5
2360
+ value: 81.059
2361
+ - type: precision_at_1
2362
+ value: 86.0
2363
+ - type: precision_at_10
2364
+ value: 83.0
2365
+ - type: precision_at_100
2366
+ value: 59.38
2367
+ - type: precision_at_1000
2368
+ value: 22.55
2369
+ - type: precision_at_3
2370
+ value: 87.333
2371
+ - type: precision_at_5
2372
+ value: 86.8
2373
+ - type: recall_at_1
2374
+ value: 0.22
2375
+ - type: recall_at_10
2376
+ value: 2.2079999999999997
2377
+ - type: recall_at_100
2378
+ value: 14.069
2379
+ - type: recall_at_1000
2380
+ value: 47.678
2381
+ - type: recall_at_3
2382
+ value: 0.7040000000000001
2383
+ - type: recall_at_5
2384
+ value: 1.161
2385
+ - task:
2386
+ type: Retrieval
2387
+ dataset:
2388
+ type: webis-touche2020
2389
+ name: MTEB Touche2020
2390
+ config: default
2391
+ split: test
2392
+ revision: None
2393
+ metrics:
2394
+ - type: map_at_1
2395
+ value: 2.809
2396
+ - type: map_at_10
2397
+ value: 10.394
2398
+ - type: map_at_100
2399
+ value: 16.598
2400
+ - type: map_at_1000
2401
+ value: 18.142
2402
+ - type: map_at_3
2403
+ value: 5.572
2404
+ - type: map_at_5
2405
+ value: 7.1370000000000005
2406
+ - type: mrr_at_1
2407
+ value: 32.653
2408
+ - type: mrr_at_10
2409
+ value: 46.564
2410
+ - type: mrr_at_100
2411
+ value: 47.469
2412
+ - type: mrr_at_1000
2413
+ value: 47.469
2414
+ - type: mrr_at_3
2415
+ value: 42.177
2416
+ - type: mrr_at_5
2417
+ value: 44.524
2418
+ - type: ndcg_at_1
2419
+ value: 30.612000000000002
2420
+ - type: ndcg_at_10
2421
+ value: 25.701
2422
+ - type: ndcg_at_100
2423
+ value: 37.532
2424
+ - type: ndcg_at_1000
2425
+ value: 48.757
2426
+ - type: ndcg_at_3
2427
+ value: 28.199999999999996
2428
+ - type: ndcg_at_5
2429
+ value: 25.987
2430
+ - type: precision_at_1
2431
+ value: 32.653
2432
+ - type: precision_at_10
2433
+ value: 23.469
2434
+ - type: precision_at_100
2435
+ value: 7.9799999999999995
2436
+ - type: precision_at_1000
2437
+ value: 1.5350000000000001
2438
+ - type: precision_at_3
2439
+ value: 29.932
2440
+ - type: precision_at_5
2441
+ value: 26.122
2442
+ - type: recall_at_1
2443
+ value: 2.809
2444
+ - type: recall_at_10
2445
+ value: 16.887
2446
+ - type: recall_at_100
2447
+ value: 48.67
2448
+ - type: recall_at_1000
2449
+ value: 82.89699999999999
2450
+ - type: recall_at_3
2451
+ value: 6.521000000000001
2452
+ - type: recall_at_5
2453
+ value: 9.609
2454
+ - task:
2455
+ type: Classification
2456
+ dataset:
2457
+ type: mteb/toxic_conversations_50k
2458
+ name: MTEB ToxicConversationsClassification
2459
+ config: default
2460
+ split: test
2461
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2462
+ metrics:
2463
+ - type: accuracy
2464
+ value: 71.57860000000001
2465
+ - type: ap
2466
+ value: 13.82629211536393
2467
+ - type: f1
2468
+ value: 54.59860966183956
2469
+ - task:
2470
+ type: Classification
2471
+ dataset:
2472
+ type: mteb/tweet_sentiment_extraction
2473
+ name: MTEB TweetSentimentExtractionClassification
2474
+ config: default
2475
+ split: test
2476
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2477
+ metrics:
2478
+ - type: accuracy
2479
+ value: 59.38030560271647
2480
+ - type: f1
2481
+ value: 59.69685552567865
2482
+ - task:
2483
+ type: Clustering
2484
+ dataset:
2485
+ type: mteb/twentynewsgroups-clustering
2486
+ name: MTEB TwentyNewsgroupsClustering
2487
+ config: default
2488
+ split: test
2489
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2490
+ metrics:
2491
+ - type: v_measure
2492
+ value: 51.4736717043405
2493
+ - task:
2494
+ type: PairClassification
2495
+ dataset:
2496
+ type: mteb/twittersemeval2015-pairclassification
2497
+ name: MTEB TwitterSemEval2015
2498
+ config: default
2499
+ split: test
2500
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2501
+ metrics:
2502
+ - type: cos_sim_accuracy
2503
+ value: 86.92853311080646
2504
+ - type: cos_sim_ap
2505
+ value: 77.67872502591382
2506
+ - type: cos_sim_f1
2507
+ value: 70.33941236068895
2508
+ - type: cos_sim_precision
2509
+ value: 67.63273258645884
2510
+ - type: cos_sim_recall
2511
+ value: 73.27176781002639
2512
+ - type: dot_accuracy
2513
+ value: 85.79603027954938
2514
+ - type: dot_ap
2515
+ value: 73.73786190233379
2516
+ - type: dot_f1
2517
+ value: 67.3437901774235
2518
+ - type: dot_precision
2519
+ value: 65.67201604814443
2520
+ - type: dot_recall
2521
+ value: 69.10290237467018
2522
+ - type: euclidean_accuracy
2523
+ value: 86.94045419324074
2524
+ - type: euclidean_ap
2525
+ value: 77.6687791535167
2526
+ - type: euclidean_f1
2527
+ value: 70.47209214023542
2528
+ - type: euclidean_precision
2529
+ value: 67.7207492094381
2530
+ - type: euclidean_recall
2531
+ value: 73.45646437994723
2532
+ - type: manhattan_accuracy
2533
+ value: 86.87488823985218
2534
+ - type: manhattan_ap
2535
+ value: 77.63373392430728
2536
+ - type: manhattan_f1
2537
+ value: 70.40920716112532
2538
+ - type: manhattan_precision
2539
+ value: 68.31265508684864
2540
+ - type: manhattan_recall
2541
+ value: 72.63852242744063
2542
+ - type: max_accuracy
2543
+ value: 86.94045419324074
2544
+ - type: max_ap
2545
+ value: 77.67872502591382
2546
+ - type: max_f1
2547
+ value: 70.47209214023542
2548
+ - task:
2549
+ type: PairClassification
2550
+ dataset:
2551
+ type: mteb/twitterurlcorpus-pairclassification
2552
+ name: MTEB TwitterURLCorpus
2553
+ config: default
2554
+ split: test
2555
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2556
+ metrics:
2557
+ - type: cos_sim_accuracy
2558
+ value: 88.67155664221679
2559
+ - type: cos_sim_ap
2560
+ value: 85.64591703003417
2561
+ - type: cos_sim_f1
2562
+ value: 77.59531005352656
2563
+ - type: cos_sim_precision
2564
+ value: 73.60967184801382
2565
+ - type: cos_sim_recall
2566
+ value: 82.03726516784724
2567
+ - type: dot_accuracy
2568
+ value: 88.41541506578181
2569
+ - type: dot_ap
2570
+ value: 84.6482788957769
2571
+ - type: dot_f1
2572
+ value: 77.04748541466657
2573
+ - type: dot_precision
2574
+ value: 74.02440754931176
2575
+ - type: dot_recall
2576
+ value: 80.3279950723745
2577
+ - type: euclidean_accuracy
2578
+ value: 88.63080684596576
2579
+ - type: euclidean_ap
2580
+ value: 85.44570045321562
2581
+ - type: euclidean_f1
2582
+ value: 77.28769403336106
2583
+ - type: euclidean_precision
2584
+ value: 72.90600040958427
2585
+ - type: euclidean_recall
2586
+ value: 82.22975053895904
2587
+ - type: manhattan_accuracy
2588
+ value: 88.59393798269105
2589
+ - type: manhattan_ap
2590
+ value: 85.40271361038187
2591
+ - type: manhattan_f1
2592
+ value: 77.17606419344392
2593
+ - type: manhattan_precision
2594
+ value: 72.4447747078295
2595
+ - type: manhattan_recall
2596
+ value: 82.5685247921158
2597
+ - type: max_accuracy
2598
+ value: 88.67155664221679
2599
+ - type: max_ap
2600
+ value: 85.64591703003417
2601
+ - type: max_f1
2602
+ value: 77.59531005352656
2603
+ license: mit
2604
+ language:
2605
+ - en
2606
+ ---
2607
+
2608
+
2609
+ <h1 align="center">FlagEmbedding</h1>
2610
+
2611
+
2612
+ <h4 align="center">
2613
+ <p>
2614
+ <a href=#model-list>Model List</a> |
2615
+ <a href=#frequently-asked-questions>FAQ</a> |
2616
+ <a href=#usage>Usage</a> |
2617
+ <a href="#evaluation">Evaluation</a> |
2618
+ <a href="#train">Train</a> |
2619
+ <a href="#contact">Contact</a> |
2620
+ <a href="#citation">Citation</a> |
2621
+ <a href="#license">License</a>
2622
+ <p>
2623
+ </h4>
2624
+
2625
+
2626
+ For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
2627
+
2628
+ If you are looking for a model that supports more languages, longer texts, and other retrieval methods, you can try using [bge-m3](https://huggingface.co/BAAI/bge-m3).
2629
+
2630
+
2631
+ [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
2632
+
2633
+ FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:
2634
+
2635
+ - **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
2636
+ - **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
2637
+ - **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
2638
+ - **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
2639
+ - **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
2640
+
2641
+ ## News
2642
+ - 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
2643
+ It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
2644
+ [Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
2645
+ - 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
2646
+ - 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) :fire:
2647
+ - 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
2648
+ - 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
2649
+ - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) and [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
2650
+ - 09/12/2023: New models:
2651
+ - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
2652
+ - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
2653
+
2654
+
2655
+ <details>
2656
+ <summary>More</summary>
2657
+ <!-- ### More -->
2658
+
2659
+ - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
2660
+ - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
2661
+ - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
2662
+ - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
2663
+ - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
2664
+
2665
+ </details>
2666
+
2667
+
2668
+ ## Model List
2669
+
2670
+ `bge` is short for `BAAI general embedding`.
2671
+
2672
+ | Model | Language | | Description | query instruction for retrieval [1] |
2673
+ |:-------------------------------|:--------:| :--------:| :--------:|:--------:|
2674
+ | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | |
2675
+ | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
2676
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
2677
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
2678
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
2679
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
2680
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
2681
+ | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
2682
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
2683
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
2684
+ | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
2685
+ | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
2686
+ | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
2687
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
2688
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
2689
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
2690
+
2691
+
2692
+ [1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
2693
+
2694
+ [2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
2695
+ For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
2696
+
2697
+ All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
2698
+ If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .
2699
+
2700
+
2701
+ ## Frequently asked questions
2702
+
2703
+ <details>
2704
+ <summary>1. How to fine-tune bge embedding model?</summary>
2705
+
2706
+ <!-- ### How to fine-tune bge embedding model? -->
2707
+ Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
2708
+ Some suggestions:
2709
+ - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
2710
+ - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
2711
+ - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
2712
+
2713
+
2714
+ </details>
2715
+
2716
+ <details>
2717
+ <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
2718
+
2719
+ <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
2720
+ **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
2721
+
2722
+ Since we finetune the models by contrastive learning with a temperature of 0.01,
2723
+ the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
2724
+ So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
2725
+
2726
+ For downstream tasks, such as passage retrieval or semantic similarity,
2727
+ **what matters is the relative order of the scores, not the absolute value.**
2728
+ If you need to filter similar sentences based on a similarity threshold,
2729
+ please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
2730
+
2731
+ </details>
2732
+
2733
+ <details>
2734
+ <summary>3. When does the query instruction need to be used</summary>
2735
+
2736
+ <!-- ### When does the query instruction need to be used -->
2737
+
2738
+ For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
2739
+ No instruction only has a slight degradation in retrieval performance compared with using instruction.
2740
+ So you can generate embedding without instruction in all cases for convenience.
2741
+
2742
+ For a retrieval task that uses short queries to find long related documents,
2743
+ it is recommended to add instructions for these short queries.
2744
+ **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
2745
+ In all cases, the documents/passages do not need to add the instruction.
2746
+
2747
+ </details>
2748
+
2749
+
2750
+ ## Usage
2751
+
2752
+ ### Usage for Embedding Model
2753
+
2754
+ Here are some examples for using `bge` models with
2755
+ [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
2756
+
2757
+ #### Using FlagEmbedding
2758
+ ```
2759
+ pip install -U FlagEmbedding
2760
+ ```
2761
+ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
2762
+
2763
+ ```python
2764
+ from FlagEmbedding import FlagModel
2765
+ sentences_1 = ["样例数据-1", "样例数据-2"]
2766
+ sentences_2 = ["样例数据-3", "样例数据-4"]
2767
+ model = FlagModel('BAAI/bge-large-zh-v1.5',
2768
+ query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
2769
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
2770
+ embeddings_1 = model.encode(sentences_1)
2771
+ embeddings_2 = model.encode(sentences_2)
2772
+ similarity = embeddings_1 @ embeddings_2.T
2773
+ print(similarity)
2774
+
2775
+ # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
2776
+ # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
2777
+ queries = ['query_1', 'query_2']
2778
+ passages = ["样例文档-1", "样例文档-2"]
2779
+ q_embeddings = model.encode_queries(queries)
2780
+ p_embeddings = model.encode(passages)
2781
+ scores = q_embeddings @ p_embeddings.T
2782
+ ```
2783
+ For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
2784
+
2785
+ By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
2786
+ You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
2787
+
2788
+
2789
+ #### Using Sentence-Transformers
2790
+
2791
+ You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
2792
+
2793
+ ```
2794
+ pip install -U sentence-transformers
2795
+ ```
2796
+ ```python
2797
+ from sentence_transformers import SentenceTransformer
2798
+ sentences_1 = ["样例数据-1", "样例数据-2"]
2799
+ sentences_2 = ["样例数据-3", "样例数据-4"]
2800
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
2801
+ embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
2802
+ embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
2803
+ similarity = embeddings_1 @ embeddings_2.T
2804
+ print(similarity)
2805
+ ```
2806
+ For s2p(short query to long passage) retrieval task,
2807
+ each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
2808
+ But the instruction is not needed for passages.
2809
+ ```python
2810
+ from sentence_transformers import SentenceTransformer
2811
+ queries = ['query_1', 'query_2']
2812
+ passages = ["样例文档-1", "样例文档-2"]
2813
+ instruction = "为这个句子生成表示以用于检索相关文章:"
2814
+
2815
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
2816
+ q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
2817
+ p_embeddings = model.encode(passages, normalize_embeddings=True)
2818
+ scores = q_embeddings @ p_embeddings.T
2819
+ ```
2820
+
2821
+ #### Using Langchain
2822
+
2823
+ You can use `bge` in langchain like this:
2824
+ ```python
2825
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
2826
+ model_name = "BAAI/bge-large-en-v1.5"
2827
+ model_kwargs = {'device': 'cuda'}
2828
+ encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
2829
+ model = HuggingFaceBgeEmbeddings(
2830
+ model_name=model_name,
2831
+ model_kwargs=model_kwargs,
2832
+ encode_kwargs=encode_kwargs,
2833
+ query_instruction="为这个句子生成表示以用于检索相关文章:"
2834
+ )
2835
+ model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
2836
+ ```
2837
+
2838
+
2839
+ #### Using HuggingFace Transformers
2840
+
2841
+ With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
2842
+
2843
+ ```python
2844
+ from transformers import AutoTokenizer, AutoModel
2845
+ import torch
2846
+ # Sentences we want sentence embeddings for
2847
+ sentences = ["样例数据-1", "样例数据-2"]
2848
+
2849
+ # Load model from HuggingFace Hub
2850
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
2851
+ model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
2852
+ model.eval()
2853
+
2854
+ # Tokenize sentences
2855
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
2856
+ # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
2857
+ # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
2858
+
2859
+ # Compute token embeddings
2860
+ with torch.no_grad():
2861
+ model_output = model(**encoded_input)
2862
+ # Perform pooling. In this case, cls pooling.
2863
+ sentence_embeddings = model_output[0][:, 0]
2864
+ # normalize embeddings
2865
+ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
2866
+ print("Sentence embeddings:", sentence_embeddings)
2867
+ ```
2868
+
2869
+
2870
+ #### Usage of the ONNX files
2871
+
2872
+ ```python
2873
+ from optimum.onnxruntime import ORTModelForFeatureExtraction # type: ignore
2874
+
2875
+ import torch
2876
+ from transformers import AutoModel, AutoTokenizer
2877
+
2878
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-en-v1.5')
2879
+ model = AutoModel.from_pretrained('BAAI/bge-large-en-v1.5', revision="refs/pr/13")
2880
+ model_ort = ORTModelForFeatureExtraction.from_pretrained('BAAI/bge-large-en-v1.5', revision="refs/pr/13",file_name="onnx/model.onnx")
2881
+
2882
+ # Sentences we want sentence embeddings for
2883
+ sentences = ["样例数据-1", "样例数据-2"]
2884
+
2885
+ # Tokenize sentences
2886
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
2887
+ # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
2888
+ # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
2889
+
2890
+ model_output_ort = model_ort(**encoded_input)
2891
+ # Compute token embeddings
2892
+ with torch.no_grad():
2893
+ model_output = model(**encoded_input)
2894
+
2895
+ # model_output and model_output_ort are identical
2896
+
2897
+ ```
2898
+
2899
+ #### Usage via infinity
2900
+ Its also possible to deploy the onnx files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
2901
+ ```python
2902
+ import asyncio
2903
+ from infinity_emb import AsyncEmbeddingEngine, EngineArgs
2904
+
2905
+ sentences = ["Embed this is sentence via Infinity.", "Paris is in France."]
2906
+ engine = AsyncEmbeddingEngine.from_args(
2907
+ EngineArgs(model_name_or_path = "BAAI/bge-large-en-v1.5", device="cpu", engine="optimum" # or engine="torch"
2908
+ ))
2909
+
2910
+ async def main():
2911
+ async with engine:
2912
+ embeddings, usage = await engine.embed(sentences=sentences)
2913
+ asyncio.run(main())
2914
+ ```
2915
+
2916
+ ### Usage for Reranker
2917
+
2918
+ Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
2919
+ You can get a relevance score by inputting query and passage to the reranker.
2920
+ The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
2921
+
2922
+
2923
+ #### Using FlagEmbedding
2924
+ ```
2925
+ pip install -U FlagEmbedding
2926
+ ```
2927
+
2928
+ Get relevance scores (higher scores indicate more relevance):
2929
+ ```python
2930
+ from FlagEmbedding import FlagReranker
2931
+ reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
2932
+
2933
+ score = reranker.compute_score(['query', 'passage'])
2934
+ print(score)
2935
+
2936
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
2937
+ print(scores)
2938
+ ```
2939
+
2940
+
2941
+ #### Using Huggingface transformers
2942
+
2943
+ ```python
2944
+ import torch
2945
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
2946
+
2947
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
2948
+ model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
2949
+ model.eval()
2950
+
2951
+ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
2952
+ with torch.no_grad():
2953
+ inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
2954
+ scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
2955
+ print(scores)
2956
+ ```
2957
+
2958
+ ## Evaluation
2959
+
2960
+ `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
2961
+ For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
2962
+
2963
+ - **MTEB**:
2964
+
2965
+ | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
2966
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2967
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
2968
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
2969
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
2970
+ | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
2971
+ | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
2972
+ | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
2973
+ | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
2974
+ | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
2975
+ | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
2976
+ | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
2977
+ | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
2978
+ | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
2979
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
2980
+ | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
2981
+ | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
2982
+ | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
2983
+ | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
2984
+
2985
+
2986
+
2987
+ - **C-MTEB**:
2988
+ We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
2989
+ Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
2990
+
2991
+ | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
2992
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
2993
+ | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
2994
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
2995
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
2996
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
2997
+ | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
2998
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
2999
+ | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
3000
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
3001
+ | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
3002
+ | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
3003
+ | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
3004
+ | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
3005
+ | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
3006
+ | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
3007
+ | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
3008
+ | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
3009
+
3010
+
3011
+ - **Reranking**:
3012
+ See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
3013
+
3014
+ | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
3015
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
3016
+ | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
3017
+ | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
3018
+ | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
3019
+ | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
3020
+ | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
3021
+ | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
3022
+ | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
3023
+ | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
3024
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
3025
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
3026
+
3027
+ \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
3028
+
3029
+ ## Train
3030
+
3031
+ ### BAAI Embedding
3032
+
3033
+ We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
3034
+ **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
3035
+ We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
3036
+ Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
3037
+ More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
3038
+
3039
+
3040
+
3041
+ ### BGE Reranker
3042
+
3043
+ Cross-encoder will perform full-attention over the input pair,
3044
+ which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
3045
+ Therefore, it can be used to re-rank the top-k documents returned by embedding model.
3046
+ We train the cross-encoder on a multilingual pair data,
3047
+ The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
3048
+ More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
3049
+
3050
+
3051
+ ## Contact
3052
+ If you have any question or suggestion related to this project, feel free to open an issue or pull request.
3053
+ You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
3054
+
3055
+
3056
+ ## Citation
3057
+
3058
+ If you find this repository useful, please consider giving a star :star: and citation
3059
+
3060
+ ```
3061
+ @misc{bge_embedding,
3062
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
3063
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
3064
+ year={2023},
3065
+ eprint={2309.07597},
3066
+ archivePrefix={arXiv},
3067
+ primaryClass={cs.CL}
3068
+ }
3069
+ ```
3070
+
3071
+ ## License
3072
+ FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
3073
+
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./output/rag_merge_5000_5000_base/model",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c20f89badce9711c10263f69814d6734fce2144a4e29de971c836abfd5f51cce
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff