File size: 1,493 Bytes
73ee87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4228ab
 
73ee87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
004d96e
73ee87c
 
 
 
 
b4228ab
 
 
73ee87c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: story_points_estimator
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# story_points_estimator

This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5010
- Accuracy: 0.2581

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 35   | 1.5660          | 0.2903   |
| No log        | 2.0   | 70   | 1.5116          | 0.2903   |
| No log        | 3.0   | 105  | 1.5010          | 0.2581   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.0.0.post200
- Datasets 2.19.2
- Tokenizers 0.19.1