--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2_base_10k_8khz_pt_cv7_2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 36.9 - name: Test CER type: cer value: 14.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 40.53 - name: Test CER type: cer value: 16.95 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 37.15 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 38.95 --- # wav2vec2_base_10k_8khz_pt_cv7_2 This model is a fine-tuned version of [lgris/seasr_2022_base_10k_8khz_pt](https://huggingface.co./lgris/seasr_2022_base_10k_8khz_pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 76.3426 - Wer: 0.1979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 189.1362 | 0.65 | 500 | 80.6347 | 0.2139 | | 174.2587 | 1.3 | 1000 | 80.2062 | 0.2116 | | 164.676 | 1.95 | 1500 | 78.2161 | 0.2073 | | 176.5856 | 2.6 | 2000 | 78.8920 | 0.2074 | | 164.3583 | 3.25 | 2500 | 77.2865 | 0.2066 | | 161.414 | 3.9 | 3000 | 77.8888 | 0.2048 | | 158.283 | 4.55 | 3500 | 77.3472 | 0.2033 | | 159.2265 | 5.19 | 4000 | 79.0953 | 0.2036 | | 156.3967 | 5.84 | 4500 | 76.6855 | 0.2029 | | 154.2743 | 6.49 | 5000 | 77.7785 | 0.2015 | | 156.6497 | 7.14 | 5500 | 77.1220 | 0.2033 | | 157.3038 | 7.79 | 6000 | 76.2926 | 0.2027 | | 162.8151 | 8.44 | 6500 | 76.7602 | 0.2013 | | 151.8613 | 9.09 | 7000 | 77.4777 | 0.2011 | | 153.0225 | 9.74 | 7500 | 76.5206 | 0.2001 | | 157.52 | 10.39 | 8000 | 76.1061 | 0.2006 | | 145.0592 | 11.04 | 8500 | 76.7855 | 0.1992 | | 150.0066 | 11.69 | 9000 | 76.0058 | 0.1988 | | 146.8128 | 12.34 | 9500 | 76.2853 | 0.1987 | | 146.9148 | 12.99 | 10000 | 76.3426 | 0.1979 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0