File size: 75,085 Bytes
4ca7515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0569275
4ca7515
 
 
 
 
 
 
0569275
 
 
 
 
 
4ca7515
 
 
 
 
0569275
 
 
 
 
 
4ca7515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation.
"""
# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.

import logging
import os
import re
import shutil
import sys
import time
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

import datasets
import evaluate
import numpy as np
import torch
import torch.nn as nn
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import (
    DatasetDict,
    IterableDataset,
    IterableDatasetDict,
    concatenate_datasets,
    interleave_datasets,
    load_dataset,
)
from huggingface_hub import Repository, create_repo
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
    AddedToken,
    HfArgumentParser,
    Seq2SeqTrainingArguments,
    WhisperConfig,
    WhisperFeatureExtractor,
    WhisperForConditionalGeneration,
    WhisperProcessor,
    WhisperTokenizerFast,
    get_scheduler,
    set_seed,
)
from transformers.modeling_outputs import BaseModelOutput
from transformers.models.whisper.english_normalizer import BasicTextNormalizer, EnglishTextNormalizer
from transformers.utils import check_min_version
from transformers.utils.versions import require_version


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.34.0.dev0")

require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")

logger = get_logger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to distill from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"}
    )
    teacher_model_name_or_path: str = field(
        metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None,
        metadata={"help": "Pretrained config name or path if not the same as model_name"},
    )
    tokenizer_name: Optional[str] = field(
        default=None,
        metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
    )
    feature_extractor_name: Optional[str] = field(
        default=None,
        metadata={"help": "feature extractor name or path if not the same as model_name"},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    subfolder: str = field(
        default="",
        metadata={
            "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
            "specify the folder name here."
        },
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech "
            "and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should "
            "match the order of the datasets."
        },
    )
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in each dataset when loading multiple datasets with streaming mode. "
            "Not required when using one dataset or non-streaming mode. The sample values provide the sampling "
            "probability for each dataset. Setting them equal to the number of sample values ensures that every "
            "sample from every dataset is used once per epoch."
        },
    )
    eval_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training "
            "dataset name if unspecified. Load multiple evaluation datasets by separating dataset "
            "ids by a '+' symbol."
        },
    )
    eval_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the "
            "training dataset config name if unspecified."
        },
    )
    dataset_cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to cache directory for saving and loading datasets"},
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set."
            )
        },
    )
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
    text_column_name: str = field(
        default=None,
        metadata={"help": "The name of the dataset column containing the text data in the training set."},
    )
    eval_text_column_name: str = field(
        default="text",
        metadata={"help": ("The name of the dataset column containing the text data in the evaluation set.")},
    )
    max_duration_in_seconds: float = field(
        default=30.0,
        metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"},
    )
    min_duration_in_seconds: float = field(
        default=0.0,
        metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"},
    )
    max_label_length: int = field(
        default=128,
        metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
    )
    pad_target_to_multiple_of: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "If set will pad the target sequence to a multiple of the provided"
                " value. This is important to avoid triggering recompilations on TPU."
                " If unspecified, will default to padding the targets to max length."
            )
        },
    )
    preprocessing_only: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to only do data preprocessing and skip training. This is"
                " especially useful when data preprocessing errors out in distributed"
                " training due to timeout. In this case, one should run the"
                " preprocessing in a non-distributed setup with"
                " `preprocessing_only=True` so that the cached datasets can"
                " consequently be loaded in distributed training"
            )
        },
    )
    train_split_name: str = field(
        default="train",
        metadata={
            "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
        },
    )
    eval_split_name: str = field(
        default="validation",
        metadata={
            "help": (
                "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'"
            )
        },
    )
    streaming: bool = field(
        default=True,
        metadata={"help": "Whether to use Datasets' streaming mode to load and pre-process the data."},
    )
    wer_threshold: float = field(
        default=None,
        metadata={
            "help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` "
            "WER with the normalised transcriptions. This only takes effect if training on pseudo-labels targets."
            "If `--use_pseudo_labels=False`, then no WER filtering is performed, since we train directly on the text"
            "transcriptions."
        },
    )
    use_pseudo_labels: bool = field(
        default=True,
        metadata={
            "help": "Whether or not to use pseudo-label transcriptions as the targets. If True, the pseudo-labels "
            "must be in the dataset column `whisper_transcript` from the previous pseudo-labelling step. This is "
            "not currently yet configurable."
        },
    )
    timestamp_probability: float = field(
        default=0.2, metadata={"help": "Probability for training on timestamped tokens if the data contains it."}
    )
    condition_on_prev_probability: float = field(
        default=0.2, metadata={"help": "Probability for conditioning on the previous text example."}
    )
    return_timestamps: bool = field(
        default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."}
    )
    language: str = field(
        default=None,
        metadata={
            "help": (
                "Language for multilingual distillation. This argument should be set for multilingual distillation "
                "only. For English speech recognition, it should be left as `None`."
            )
        },
    )
    task: str = field(
        default="transcribe",
        metadata={
            "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."
            "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`."
        },
    )
    wandb_project: str = field(
        default="distil-whisper",
        metadata={"help": "The name of the wandb project."},
    )


@dataclass
class DistillationTrainingArguments(Seq2SeqTrainingArguments):
    freeze_encoder: Optional[bool] = field(
        default=False,
        metadata={
            "help": (
                "Whether to freeze the entire encoder model. Only recommended when the entire encoder has been "
                "copied from the teacher model."
            )
        },
    )
    temperature: Optional[float] = field(
        default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
    )
    kl_weight: Optional[float] = field(
        default=1.0,
        metadata={
            "help": (
                "Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
                "computed between the teacher-student hidden states and attentions."
            )
        },
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": (
                "The data type (dtype) in which to run training. One of `float32` (full-precision), "
                "`float16` or `bfloat16` (both half-precision)."
            )
        },
    )


@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        processor ([`Wav2Vec2Processor`])
            The processor used for proccessing the data.
        decoder_start_token_id (:obj: `int`)
            The start-of-sequence token id of the decoder.
        decoder_prev_token_id (:obj: `int`)
            The start-of-prompt token id of the decoder
        input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
            See above for details.
        max_target_length (:obj:`int`, `optional`):
            Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
    """

    processor: Any
    decoder_start_token_id: int
    decoder_prev_token_id: int
    input_padding: Union[bool, str] = "max_length"
    target_padding: Union[bool, str] = "max_length"
    max_target_length: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        model_input_name = self.processor.model_input_names[0]

        # dataloader returns a list of features which we convert to a dict
        input_features = {model_input_name: [feature[model_input_name] for feature in features]}
        label_features = {"input_ids": [feature["labels"] for feature in features]}

        # reformat list to dict and set to pytorch format
        batch = self.processor.feature_extractor.pad(
            input_features,
            padding=self.input_padding,
            return_tensors="pt",
        )

        labels_batch = self.processor.tokenizer.pad(
            label_features,
            max_length=self.max_target_length,
            padding=self.target_padding,
            return_tensors="pt",
        )

        # shift labels to the right to get decoder input ids
        labels = labels_batch["input_ids"]
        decoder_input_ids = labels[:, :-1]
        labels = labels[:, 1:]
        labels_mask = labels_batch.attention_mask[:, 1:]

        # replace padding with -100 to ignore correctly when computing the loss
        labels = labels.masked_fill(labels_mask.ne(1), -100)

        # replace initial prompt tokens with -100 to ignore correctly when computing the loss
        bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1)
        prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None]
        labels = torch.where(prompt_mask, -100, labels)

        batch["labels"] = labels
        batch["decoder_input_ids"] = decoder_input_ids

        return batch


def log_metric(
    accelerator,
    metrics: Dict,
    train_time: float,
    step: int,
    epoch: int,
    learning_rate: float = None,
    prefix: str = "train",
):
    """Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
    log_metrics = {}
    for k, v in metrics.items():
        log_metrics[f"{prefix}/{k}"] = v
    log_metrics[f"{prefix}/time"] = train_time
    log_metrics[f"{prefix}/epoch"] = epoch
    if learning_rate is not None:
        log_metrics[f"{prefix}/learning_rate"] = learning_rate
    accelerator.log(log_metrics, step=step)


def log_pred(
    accelerator,
    pred_str: List[str],
    label_str: List[str],
    norm_pred_str: List[str],
    norm_label_str: List[str],
    step: int,
    prefix: str = "eval",
    num_lines: int = 200000,
):
    """Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
    if accelerator.is_main_process:
        # wandb_tracker = accelerator.get_tracker("wandb")
        # pretty name for current step: step 50000 -> step 50k
        cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
        prefix_pretty = prefix.replace("/", "-")

        # convert str data to a wandb compatible format
        str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))]
        # log as a table with the appropriate headers
        # wandb_tracker.log_table(
        #     table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
        #     columns=["Target", "Pred", "Norm Target", "Norm Pred"],
        #     data=str_data[:num_lines],
        #     step=step,
        # )

        # log incorrect normalised predictions
        str_data = np.asarray(str_data)
        str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]]
        # log as a table with the appropriate headers
        # wandb_tracker.log_table(
        #     table_name=f"incorrect_predictions/{prefix_pretty}-step-{cur_step_pretty}",
        #     columns=["Target", "Pred", "Norm Target", "Norm Pred"],
        #     data=str_data_incorrect[:num_lines],
        #     step=step,
        # )


def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    splits=None,
    text_column_names=None,
    dataset_samples=None,
    default_split="train",
) -> List[Dict]:
    """
    Given three lists of dataset names, configs and splits, this function groups the corresponding
    names/configs/splits. Each dataset is assigned a unique dictionary with these metadata values, and the
    function returns a list of dictionaries, one for each dataset.
    """
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        text_column_names = text_column_names.split("+") if text_column_names is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if text_column_names is not None and len(text_column_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(text_column_names)} text column names."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    text_column_names = (
        text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
    )
    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "text_column_name": text_column_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    splits: Optional[Union[List, str]] = None,
    text_column_names: Optional[List] = None,
    sampling_rate: Optional[int] = 16000,
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
    streaming: Optional[bool] = True,
    seed: Optional[int] = None,
    accelerator: Optional[Accelerator] = None,
    use_pseudo_labels: float = None,
    **kwargs,
) -> IterableDataset:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, splits, text_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(
        dataset_names_dict,
        desc="Combining datasets...",
        disable=not accelerator.is_local_main_process if accelerator is not None else False,
    ):
        dataset = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            streaming=streaming,
            **kwargs,
        )
        # resample to specified sampling rate
        dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
        dataset_features = dataset.features.keys()
        columns_to_keep = {"audio", "text"}

        if dataset_dict["text_column_name"] not in dataset_features:
            raise ValueError(
                f"Text column name {dataset_dict['text_column_name']} not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the"
                f" correct text column - one of {', '.join(dataset_features)}."
            )

        # blanket renaming of all transcription columns to text
        if dataset_dict["text_column_name"] != "text":
            dataset = dataset.rename_column(dataset_dict["text_column_name"], "text")

        if use_pseudo_labels:
            if "whisper_transcript" not in dataset_features:
                raise ValueError(
                    f"Pseudo-label column `whisper_transcript` not found in dataset {dataset_dict['name']}. Ensure"
                    "pseudo-labels are present in the dataset under this column name, or train directly on the text "
                    "labels by setting `--use_pseudo_labels=False` and defining the appropriate `--text_column_name`."
                )
            columns_to_keep.add("whisper_transcript")
        dataset_features = dataset.features.keys()
        dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
        interleaved_dataset = concatenate_datasets(all_datasets)

    return interleaved_dataset


def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> Dict:
    """Helper function to map the student layer i to the teacher layer j whose output we'd like them to emulate. Used
    for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers
    in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer
    3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer
    2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely
    the output of this function for the arguments (student_layers=3, teacher_layers=12)."""
    layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int)
    layer_intervals[-1] = teacher_layers - 1
    layer_map = {}

    for student_layer, teacher_layer in enumerate(layer_intervals):
        layer_map[student_layer] = teacher_layer

    return layer_map


def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
    """Helper function to sort saved checkpoints from oldest to newest."""
    ordering_and_checkpoint_path = []

    glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]

    for path in glob_checkpoints:
        regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
        if regex_match is not None and regex_match.groups() is not None:
            ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
    return checkpoints_sorted


def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None:
    """Helper function to delete old checkpoints."""
    if save_total_limit is None or save_total_limit <= 0:
        return
    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
    if len(checkpoints_sorted) <= save_total_limit:
        return

    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
        shutil.rmtree(checkpoint, ignore_errors=True)


_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")


def get_last_checkpoint(folder):
    content = os.listdir(folder)
    checkpoints = [
        path
        for path in content
        if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
    ]
    if len(checkpoints) == 0:
        return
    return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))


def get_parameter_names(model, forbidden_layer_types, forbidden_module=None):
    """
    Returns the names of the model parameters that are not inside a forbidden layer or forbidden module.
    Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser
    (e.g. if the module is frozen).
    """
    result = []
    for name, child in model.named_children():
        result += [
            f"{name}.{n}"
            for n in get_parameter_names(child, forbidden_layer_types, forbidden_module)
            if not (
                isinstance(child, tuple(forbidden_layer_types))
                or (child in tuple(forbidden_module) if forbidden_module is not None else False)
            )
        ]
    # Add model specific parameters (defined with nn.Parameter) since they are not in any child.
    result += list(model._parameters.keys())
    return result


def main():
    # 1. Parse input arguments
    # We keep distinct sets of args, for cleaner separation of model/data/training related args
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # 2. Initialize the accelerator
    # We will let the accelerator handle device placement for us in this example
    # We simply have to specify the training precision and any trackers being used
    # We'll use the same dtype arguments as our JAX/Flax training script and convert
    # it to accelerate format
    # The teacher model can safely be cast to the dtype of training since we don't
    # update the params
    if training_args.dtype == "float16":
        mixed_precision = "fp16"
        teacher_dtype = torch.float16
    elif training_args.dtype == "bfloat16":
        mixed_precision = "bf16"
        teacher_dtype = torch.bfloat16
    else:
        mixed_precision = "no"
        teacher_dtype = torch.float32

    accelerator = Accelerator(
        gradient_accumulation_steps=training_args.gradient_accumulation_steps,
        mixed_precision=mixed_precision,
        log_with=training_args.report_to,
        project_dir=training_args.output_dir,
    )

    accelerator.init_trackers(project_name=data_args.wandb_project)

    # 3. Set-up basic logging
    # Create one log on every process with the configuration for debugging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Log a small summary on each proces
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )

    # Set the verbosity to info of the Transformers logger (on main process only)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    logger.info("Training/evaluation parameters %s", training_args)

    # 4. Detecting last checkpoint and eventually continue from last checkpoint
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # 5. Handle the repository creation
    if accelerator.is_main_process:
        if training_args.push_to_hub:
            # Retrieve of infer repo_name
            repo_name = training_args.hub_model_id
            if repo_name is None:
                repo_name = Path(training_args.output_dir).absolute().name
            # Create repo and retrieve repo_id
            repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
            # Clone repo locally
            repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)

            with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
                if "wandb" not in gitignore:
                    gitignore.write("wandb\n")
        elif training_args.output_dir is not None:
            os.makedirs(training_args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # 6. Load dataset - either streaming or non-streaming (offline)
    raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()

    # set seed for determinism
    set_seed(training_args.seed)

    if training_args.do_train:
        raw_datasets["train"] = load_multiple_datasets(
            data_args.train_dataset_name,
            data_args.train_dataset_config_name,
            splits=data_args.train_split_name,
            text_column_names=data_args.text_column_name,
            use_pseudo_labels=data_args.use_pseudo_labels,
            streaming=data_args.streaming,
            dataset_samples=data_args.train_dataset_samples,
            seed=training_args.seed,
            accelerator=accelerator,
            cache_dir=data_args.dataset_cache_dir,
            token=model_args.token,
        )
        raw_datasets_train_features = list(raw_datasets["train"].features.keys())

    if training_args.do_eval:
        dataset_names_dict = convert_dataset_str_to_list(
            data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
            data_args.eval_dataset_config_name
            if data_args.eval_dataset_config_name
            else data_args.train_dataset_config_name,
            splits=data_args.eval_split_name,
            text_column_names=data_args.eval_text_column_name,
        )
        all_eval_splits = []
        if len(dataset_names_dict) == 1:
            # load a single eval set
            dataset_dict = dataset_names_dict[0]
            all_eval_splits.append("eval")
            raw_datasets["eval"] = load_dataset(
                dataset_dict["name"],
                dataset_dict["config"],
                split=dataset_dict["split"],
                cache_dir=data_args.dataset_cache_dir,
                token=model_args.token,
                streaming=data_args.streaming,
            )
            if data_args.eval_text_column_name != "text":
                raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_text_column_name, "text")
        else:
            # load multiple eval sets
            for dataset_dict in dataset_names_dict:
                if dataset_dict["name"] == "esb/diagnostic-dataset":
                    # for the ESB diagnostic dataset, the dataset name is effectively the config
                    pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}"
                else:
                    pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
                all_eval_splits.append(pretty_name)
                raw_datasets[pretty_name] = load_dataset(
                    dataset_dict["name"],
                    dataset_dict["config"],
                    split=dataset_dict["split"],
                    cache_dir=data_args.dataset_cache_dir,
                    token=model_args.token,
                    streaming=data_args.streaming,
                )
                # make column names consistent (text, audio)
                if dataset_dict["text_column_name"] != "text":
                    raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
                        dataset_dict["text_column_name"], "text"
                    )
                raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
                    set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"}
                )

    if not training_args.do_train and not training_args.do_eval:
        raise ValueError(
            "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
        )

    # 7. Load pretrained model, tokenizer, and feature extractor
    config = WhisperConfig.from_pretrained(
        (model_args.config_name if model_args.config_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
    )
    feature_extractor = WhisperFeatureExtractor.from_pretrained(
        (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
    )
    tokenizer = WhisperTokenizerFast.from_pretrained(
        (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        token=model_args.token,
    )

    # override timestamp tokens until tokenizer issues are fixed in transformers
    timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
    tokenizer.add_tokens(timestamps)

    teacher_model = WhisperForConditionalGeneration.from_pretrained(
        model_args.teacher_model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=model_args.token,
        low_cpu_mem_usage=True,
        torch_dtype=teacher_dtype,
    )

    student_model = WhisperForConditionalGeneration.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        subfolder=model_args.subfolder,
        token=model_args.token,
        low_cpu_mem_usage=True,
    )

    if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None:
        raise ValueError(
            f"Make sure that `config.decoder_start_token_id` is correctly defined for both the "
            f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the "
            f"student and {teacher_model.config.decoder_start_token_id} for the teacher."
        )

    share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model

    # enable gradient checkpointing if necessary
    if training_args.gradient_checkpointing:
        student_model.gradient_checkpointing_enable()

    # freeze student encoder if necessary
    if training_args.freeze_encoder:
        student_model.freeze_encoder()
        student_model.model.encoder.gradient_checkpointing = False

    # if share_hidden_states:
    # tie the weights for the student encoder if we're freezing it and it's the same as the teacher
    #    student_model.model.encoder = teacher_model.model.encoder

    if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
        # We need to set the language and task ids for previously multilingual checkpoints
        is_multilingual = True
        tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task, predict_timestamps=False)
        student_model.generation_config.update(
            **{
                "language": data_args.language,
                "task": data_args.task,
            }
        )
    elif data_args.language is not None:
        raise ValueError(
            "Setting language token for an English-only checkpoint is not permitted. The language argument should "
            "only be set for multilingual checkpoints."
        )
    else:
        is_multilingual = False

    # 8. Create a single speech processor - make sure all processes wait until data is saved
    if accelerator.is_main_process:
        feature_extractor.save_pretrained(training_args.output_dir)
        tokenizer.save_pretrained(training_args.output_dir)
        # save the config and generation config as well
        config.save_pretrained(training_args.output_dir)
        student_model.generation_config.save_pretrained(training_args.output_dir)

    accelerator.wait_for_everyone()
    processor = WhisperProcessor.from_pretrained(training_args.output_dir)

    # 9. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    sampling_rate = feature_extractor.sampling_rate
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name,
        datasets.features.Audio(sampling_rate=sampling_rate),
    )

    # 10. Preprocessing the datasets: we need to read the audio files as arrays and tokenize the targets.
    # 10.1: Define the pre-processing constants
    max_input_length = int(data_args.max_duration_in_seconds * sampling_rate)
    min_input_length = int(data_args.min_duration_in_seconds * sampling_rate)
    max_label_length = (
        data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length
    )

    timestamp_probability = data_args.timestamp_probability
    condition_on_prev_probability = data_args.condition_on_prev_probability
    return_timestamps = data_args.return_timestamps if timestamp_probability > 0 else False

    timestamp_ids = tokenizer.timestamp_ids()
    timestamp_begin = tokenizer.all_special_ids[-1]
    timestamp_position = 3 if is_multilingual else 1

    decoder_start_token_id = student_model.config.decoder_start_token_id  # <|startoftranscript|>
    decoder_prev_token_id = tokenizer.all_special_ids[-3]  # <|startofprev|>
    decoder_eot_token_id = tokenizer.eos_token_id

    language = data_args.language
    task = data_args.task

    num_workers = data_args.preprocessing_num_workers
    dataloader_num_workers = training_args.dataloader_num_workers

    metric = evaluate.load("wer")
    normalizer = (
        BasicTextNormalizer() if language is not None else EnglishTextNormalizer(tokenizer.english_spelling_normalizer)
    )
    wer_threshold = data_args.wer_threshold
    use_pseudo_labels = data_args.use_pseudo_labels
    train_text_column_name = "whisper_transcript" if use_pseudo_labels else "text"

    # 10.2: filter based on maximum number of training/evaluation samples
    if training_args.do_train and data_args.max_train_samples is not None:
        raw_datasets["train"] = (
            raw_datasets["train"].take(data_args.max_train_samples)
            if data_args.streaming
            else raw_datasets["train"].select(range(data_args.max_train_samples))
        )

    if training_args.do_eval and data_args.max_eval_samples is not None:
        for eval_split in all_eval_splits:
            raw_datasets[eval_split] = (
                raw_datasets[eval_split].take(data_args.max_eval_samples)
                if data_args.streaming
                else raw_datasets[eval_split].select(range(data_args.max_eval_samples))
            )

    # 10.3: filter training data based on WER threshold -> this is KEY to good distillation performance
    def is_wer_in_range(ground_truth, whisper_transcript):
        norm_ground_truth = normalizer(ground_truth)
        if (
            isinstance(whisper_transcript, str)
            and whisper_transcript.startswith("[")
            and whisper_transcript.endswith("]")
        ):
            whisper_transcript = re.findall(r"\d+", whisper_transcript)
            whisper_transcript = [int(token) for token in whisper_transcript]
        if isinstance(whisper_transcript, list):
            whisper_transcript = tokenizer.decode(whisper_transcript, skip_special_tokens=True)
        if len(norm_ground_truth) > 0 and whisper_transcript is not None:
            norm_whisper_transcript = normalizer(whisper_transcript)
            wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth])
            return wer < wer_threshold
        else:
            # filter automatically since we can't know the WER
            return False

    filter_by_wer_threshold = partial(
        raw_datasets["train"].filter,
        function=is_wer_in_range,
        input_columns=["text", "whisper_transcript"],
    )

    if wer_threshold is not None and use_pseudo_labels:
        raw_datasets["train"] = (
            filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer")
            if not data_args.streaming
            else filter_by_wer_threshold()
        )

    # 10.4: pre-process training/evaluation datasets
    def has_timestamp_tokens(input_str):
        """
        Identify whether the input string contains timestamp tokens, of the form <|0.00|>, by searching for
        pairs of left and right-angle brackets.
        """
        return bool(re.search("\<[^\>]*\>", input_str))

    def prepare_train_dataset(batch):
        """
        Pre-process the raw dataset in a three stage process:
            1. Convert the audio arrays to log-mel spectrogram inputs
            2. Possibly filter the timestamp tokens from the token ids (depending on the timestamp probability)
            3. Possibly add prompt tokens if conditioning on previous text (depending on the conditioning probability)
        TODO(SG): see whether we can 'pack' the audio inputs closer to 30 second chunks
        """
        # process audio input
        audio = [sample["array"] for sample in batch["audio"]]
        inputs = feature_extractor(audio, sampling_rate=sampling_rate)
        batch["input_features"] = inputs.input_features
        batch["input_length"] = [len(sample) for sample in audio]

        # process text targets - for training these are the Whisper-generated pseudo-labels
        input_str_batched = batch[train_text_column_name]

        all_token_ids = []
        all_token_ids_unprompted = []
        for input_str in input_str_batched:
            if isinstance(input_str, list):
                # pseudo-labelled transcriptions have been retained as token ids (`decode_token_ids=False`)
                token_ids = input_str
            elif input_str[0].startswith("[") and input_str[0].endswith("]"):
                token_ids = re.findall(r"\d+", input_str)
                token_ids = [int(token) for token in token_ids]
            else:
                token_ids = None

            if token_ids is not None:
                # remove the EOT tokens to get the 'true' token length
                token_ids = [token for token in token_ids if token != decoder_eot_token_id]
                token_ids = token_ids + [decoder_eot_token_id]
                # check whether we have timestamps in the PLs and filter if required
                has_timestamps = len(set(token_ids) & set(timestamp_ids)) > 0
                if has_timestamps:
                    # sample from binomial distribution to get probability of training on timestamps
                    predict_timestamps = bool(np.random.binomial(1, timestamp_probability))
                    if not predict_timestamps:
                        # filter timestamps and insert the <|notimestamps|> task token
                        token_ids = [token for token in token_ids if token < timestamp_begin]
                        token_ids.insert(timestamp_position, timestamp_begin)
            else:
                # pseudo-labelled transcriptions have been decoded to text (`decode_token_ids=True`)
                has_timestamps = has_timestamp_tokens(input_str)

                if has_timestamps:
                    predict_timestamps = bool(np.random.binomial(1, timestamp_probability))
                    if not predict_timestamps:
                        # filter timestamp token ids if not part of the prediction task
                        input_str = tokenizer._filter_timestamp_ids(input_str)
                else:
                    predict_timestamps = False

                tokenizer.set_prefix_tokens(language=language, task=task, predict_timestamps=predict_timestamps)
                token_ids = tokenizer(input_str).input_ids

            all_token_ids_unprompted.append(token_ids)
            # check whether to condition on previous text - we do this with probability condition_on_prev_probability
            condition_on_prev = bool(np.random.binomial(1, condition_on_prev_probability))
            if condition_on_prev and len(all_token_ids_unprompted) > 1:
                # prompt ids are the penultimate token ids in the batch
                prompt_ids = all_token_ids_unprompted[-2]
                # strip timestamp tokens from prompt
                prompt_ids = [token for token in prompt_ids if token < timestamp_begin]
                if len(prompt_ids) > 0:
                    # remove the standard task tokens and add the special <|startofprev|> token
                    prompt_ids = [decoder_prev_token_id] + prompt_ids[timestamp_position:-1]
                if len(prompt_ids + token_ids) < max_label_length:
                    token_ids = prompt_ids + token_ids
            all_token_ids.append(token_ids)

        batch["labels"] = all_token_ids
        return batch

    def prepare_eval_dataset(batch):
        # process audio input
        sample = batch["audio"]
        inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
        batch["input_features"] = inputs.input_features[0]
        batch["input_length"] = len(sample["array"])

        # process targets - for evaluation these are the ground-truth transcriptions
        input_str = batch["text"]
        batch["labels"] = tokenizer(input_str).input_ids
        return batch

    vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
    if training_args.do_train:
        # with streaming mode we can only have 1 worker, whereas with non-streaming
        # we can use `num_workers` (which is much faster)
        # We gate the pre-processing function accordingly
        map_fn_train = partial(
            raw_datasets["train"].map,
            function=prepare_train_dataset,
            remove_columns=raw_datasets_train_features,
            batched=True,
            batch_size=max(
                training_args.per_device_train_batch_size // 4, 4
            ),  # TODO(SG) make data prep bs configurable
        )
        vectorized_datasets["train"] = (
            map_fn_train(num_proc=num_workers, desc="preprocess train dataset")
            if not data_args.streaming
            else map_fn_train()
        )
    if training_args.do_eval:
        for eval_split in all_eval_splits:
            raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
            map_fn_eval = partial(
                raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
            )
            if accelerator.is_main_process:
                vectorized_datasets[eval_split] = (
                    map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset")
                    if not data_args.streaming
                    else map_fn_eval()
                )

    # 10.5: Filter training data with inputs longer than `max_input_length`
    def is_audio_in_length_range(length):
        return min_input_length < length < max_input_length

    filter_by_audio_fn = partial(
        vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"]
    )
    vectorized_datasets = (
        filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length")
        if not data_args.streaming
        else filter_by_audio_fn()
    )

    # 10.6: Filter training data with labels longer than `max_label_length`
    def is_labels_in_length_range(labels):
        return 0 < len(labels) <= max_label_length

    filter_by_labels_fn = partial(
        vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
    )
    vectorized_datasets = (
        filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
        if not data_args.streaming
        else filter_by_labels_fn()
    )

    # Pre-processing complete!
    # For large datasets it is advised to run the preprocessing on a
    # single machine first with `--preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step, `--preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        if data_args.streaming:
            raise ValueError(
                "When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion"
                "of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing "
                "on the fly with streaming mode."
            )
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    # 11. Define Evaluation Metrics
    def compute_metrics(preds, labels):
        # replace padded labels by the padding token
        for idx in range(len(labels)):
            labels[idx][labels[idx] == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
        wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str)

        # normalize everything and re-compute the WER
        norm_pred_str = [normalizer(pred) for pred in pred_str]
        norm_label_str = [normalizer(label) for label in label_str]
        # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here
        pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
        label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
        # filtering step to only evaluate the samples that correspond to non-zero normalized references:
        norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
        norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]

        wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
        return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str

    # 12. Define Training Schedule
    # Store some constants
    per_device_train_batch_size = int(training_args.per_device_train_batch_size)
    train_batch_size = per_device_train_batch_size * accelerator.num_processes
    gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)

    if not data_args.streaming and training_args.max_steps < 0:
        num_epochs = int(training_args.num_train_epochs)
        steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
        total_train_steps = steps_per_epoch * num_epochs
    elif training_args.max_steps > 0:
        logger.info("max_steps is given, it will override any value given in num_train_epochs")
        total_train_steps = int(training_args.max_steps)
        # Setting a very large number of epochs so we go as many times as necessary over the iterator.
        num_epochs = sys.maxsize
        steps_per_epoch = total_train_steps
    else:
        raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")

    if training_args.eval_steps is None:
        logger.info(
            f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
        )
        eval_steps = steps_per_epoch
    else:
        eval_steps = training_args.eval_steps

    # 13. Define optimizer, LR scheduler, collator
    decay_parameters = get_parameter_names(
        student_model,
        [nn.LayerNorm],
        forbidden_module=[student_model.model.encoder] if training_args.freeze_encoder else None,
    )
    decay_parameters = [name for name in decay_parameters if "bias" not in name]
    optimizer_grouped_parameters = [
        {
            "params": [param for name, param in student_model.named_parameters() if name in decay_parameters],
            "weight_decay": training_args.weight_decay,
        },
        {
            "params": [param for name, param in student_model.named_parameters() if name not in decay_parameters],
            "weight_decay": 0.0,
        },
    ]
    optimizer = torch.optim.AdamW(
        params=optimizer_grouped_parameters,
        lr=training_args.learning_rate,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
    )

    # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
    lr_scheduler = get_scheduler(
        name=training_args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=training_args.warmup_steps * accelerator.num_processes,
        num_training_steps=total_train_steps * accelerator.num_processes,
    )

    data_collator = DataCollatorSpeechSeq2SeqWithPadding(
        processor=processor,
        decoder_start_token_id=decoder_start_token_id,
        decoder_prev_token_id=decoder_prev_token_id,
        input_padding="longest",
        target_padding="max_length",
        max_target_length=max_label_length,
    )

    # 14. Define generation arguments - we need to do this before we wrap the models in DDP
    # so that we can still access the configs
    num_beams = (
        training_args.generation_num_beams
        if training_args.generation_num_beams is not None
        else getattr(student_model.generation_config, "num_beams", 1)
    )

    gen_kwargs = {
        "max_length": max_label_length,
        "num_beams": num_beams,
        "return_timestamps": return_timestamps,
    }
    if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
        # forcing the language and task tokens helps multilingual models in their generations
        gen_kwargs.update(
            {
                "language": data_args.language,
                "task": data_args.task,
            }
        )

    # 15. Prepare everything with accelerate
    student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare(
        student_model, teacher_model, optimizer, lr_scheduler
    )

    def kl_divergence(target_distribution, log_predicted_distribution, labels):
        kl_loss = nn.KLDivLoss(reduction="none")
        divergence = kl_loss(log_predicted_distribution, target_distribution)
        # ignore padded tokens from divergence, i.e. where labels are not set to -100
        padding_mask = labels >= 0
        padding_mask = padding_mask.unsqueeze(-1)
        divergence = divergence * padding_mask
        # take the average over the mini-batch
        divergence = divergence.sum() / padding_mask.sum()
        return divergence

    # Define gradient update step fn
    def train_step(
        batch,
        temperature=2.0,
    ):
        student_model.train()
        teacher_model.eval()

        student_outputs = student_model(**batch)
        with torch.no_grad():
            if share_hidden_states:
                # if the student and teacher share the same frozen encoder then we don't have to recompute the
                # encoder hidden-states for the teacher model, we can just re-use from the student
                encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state)
                teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
            else:
                # do the full forward pass for the teacher model (encoder + decoder)
                teacher_outputs = teacher_model(**batch)

        # CE (data) loss
        ce_loss = student_outputs.loss
        # rescale distribution by temperature to ensure gradients scale correctly
        teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1)
        # log softmax of student predictions for numerical stability
        student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1)
        # KL-divergence loss (scaled by temperature)
        kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2

        # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
        loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
        metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
        return loss, metrics

    # Define eval fn
    def eval_step(batch):
        student_model.eval()
        teacher_model.eval()

        with torch.no_grad():
            student_outputs = student_model(**batch)
            if share_hidden_states:
                encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state)
                teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
            else:
                teacher_outputs = teacher_model(**batch)

        # CE (data) loss
        ce_loss = student_outputs.loss

        # log softmax / softmax for numerical stability
        student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1)
        teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1)
        # temperature is always 1 for eval
        kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"])

        # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
        loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
        metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
        return metrics

    def generate_step(batch):
        student_model.eval()
        output_ids = accelerator.unwrap_model(student_model).generate(batch["input_features"], **gen_kwargs)
        output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id)
        return output_ids

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
    logger.info("  Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
    logger.info("  Gradient accumulation steps =" f" {gradient_accumulation_steps}")
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")

    # ======================== Training ================================
    train_time = 0
    train_start = time.time()
    steps_trained_progress_bar = tqdm(
        range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
    )
    continue_training = True
    epochs_trained = 0
    cur_step = 0

    checkpoint = None
    if training_args.resume_from_checkpoint is not None:
        checkpoint = training_args.resume_from_checkpoint
    elif last_checkpoint is not None:
        checkpoint = last_checkpoint

    if checkpoint is not None:
        accelerator.load_state(checkpoint)
        # Find num steps and epoch from saved state string pattern
        pattern = r"checkpoint-(\d+)-epoch-(\d+)"
        match = re.search(pattern, checkpoint)
        cur_step = int(match.group(1))
        epochs_trained = int(match.group(2))

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info(f"  Continuing training from epoch {epochs_trained}")
        logger.info(f"  Continuing training from global step {cur_step}")

        steps_trained_progress_bar.update(cur_step)

        for epoch in range(0, epochs_trained):
            vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)

        if not data_args.streaming and training_args.max_steps < 0:
            # we know exactly the number of steps per epoch, so can skip through the required number of batches
            resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
        else:
            # Currently we don't know how many steps we've taken in the current epoch
            # So we just shuffle the dataset one extra time and start from a fresh epoch
            # This is "good enough" for our purposes but not fully correct
            resume_step = None
            vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
    else:
        resume_step = None

    for epoch in range(epochs_trained, num_epochs):
        vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
        train_dataloader = DataLoader(
            vectorized_datasets["train"],
            collate_fn=data_collator,
            batch_size=per_device_train_batch_size,
            num_workers=dataloader_num_workers,
            pin_memory=training_args.dataloader_pin_memory,
        )
        train_dataloader = accelerator.prepare(train_dataloader)
        if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
            train_dataloader.dataset.set_epoch(epoch)

        if resume_step is not None:
            # Skip the first N batches in the dataloader when resuming from a checkpoint
            train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
            resume_step = None

        for batch in train_dataloader:
            with accelerator.accumulate(student_model):
                loss, train_metric = train_step(batch, temperature=training_args.temperature)
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Check if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                steps_trained_progress_bar.update(1)
                cur_step += 1

                if cur_step % training_args.logging_steps == 0:
                    steps_trained_progress_bar.write(
                        f"Step... ({cur_step} / {total_train_steps} | Loss:"
                        f" {train_metric['loss']}, Learning Rate:"
                        f" {lr_scheduler.get_last_lr()[0]})"
                    )
                    log_metric(
                        accelerator,
                        metrics=train_metric,
                        learning_rate=lr_scheduler.get_last_lr()[0],
                        train_time=train_time + time.time() - train_start,
                        step=cur_step,
                        epoch=epoch,
                        prefix="train",
                    )

                # save checkpoint and weights after each save_steps and at the end of training
                if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
                    intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
                    accelerator.save_state(output_dir=intermediate_dir)
                    accelerator.wait_for_everyone()
                    if accelerator.is_main_process:
                        rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir)

                        if cur_step == total_train_steps:
                            # un-wrap student model for save
                            student_model = accelerator.unwrap_model(student_model)
                            student_model.save_pretrained(training_args.output_dir)
                            # re-wrap student model for final eval
                            student_model = accelerator.prepare(student_model)

                        if training_args.push_to_hub:
                            repo.push_to_hub(
                                commit_message=f"Saving train state of step {cur_step}",
                                blocking=False,
                            )

                if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
                    train_time += time.time() - train_start
                    student_model.eval()
                    # ======================== Evaluating ==============================
                    for eval_split in all_eval_splits:
                        eval_metrics = []
                        eval_preds = []
                        eval_labels = []
                        eval_start = time.time()

                        validation_dataloader = DataLoader(
                            vectorized_datasets[eval_split],
                            collate_fn=data_collator,
                            batch_size=per_device_eval_batch_size,
                            drop_last=False,
                            num_workers=dataloader_num_workers,
                            pin_memory=training_args.dataloader_pin_memory,
                        )
                        validation_dataloader = accelerator.prepare(validation_dataloader)

                        for batch in tqdm(
                            validation_dataloader,
                            desc=f"Evaluating {eval_split}...",
                            position=2,
                            disable=not accelerator.is_local_main_process,
                        ):
                            # Model forward
                            eval_metric = eval_step(batch)
                            eval_metric = accelerator.gather_for_metrics(eval_metric)
                            eval_metrics.append(eval_metric)

                            # generation
                            if training_args.predict_with_generate:
                                generated_ids = generate_step(batch)
                                # Gather all predictions and targets
                                generated_ids, labels = accelerator.gather_for_metrics(
                                    (generated_ids, batch["labels"])
                                )
                                eval_preds.extend(generated_ids)
                                eval_labels.extend(labels)

                        eval_time = time.time() - eval_start
                        # normalize eval metrics
                        eval_metrics = {
                            key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0]
                        }

                        # compute WER metric
                        wer_desc = ""
                        if training_args.predict_with_generate:
                            wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
                                eval_preds, eval_labels
                            )
                            eval_metrics.update(wer_metric)
                            wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
                            log_pred(
                                accelerator,
                                pred_str,
                                label_str,
                                norm_pred_str,
                                norm_label_str,
                                step=cur_step,
                                prefix=eval_split,
                            )

                        # Print metrics and update progress bar
                        steps_trained_progress_bar.write(
                            f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
                            f" {wer_desc})"
                        )

                        log_metric(
                            accelerator,
                            metrics=eval_metrics,
                            train_time=eval_time,
                            step=cur_step,
                            epoch=epoch,
                            prefix=eval_split,
                        )

                    # flush the train metrics
                    train_start = time.time()

                # break condition
                if cur_step == total_train_steps:
                    continue_training = False
                    break

        if not continue_training:
            break

    accelerator.end_training()


if __name__ == "__main__":
    main()