Update README.md
Browse files
README.md
CHANGED
@@ -9,27 +9,28 @@ pipeline_tag: text-generation
|
|
9 |
|
10 |
|
11 |
|
12 |
-
# tinyllama-1.1b-chat-v0.
|
13 |
|
14 |
-
**tinyllama-1.1b-chat-v0.
|
15 |
|
16 |
|
17 |
### Benchmark Metrics
|
18 |
|
19 |
-
| Metric |lgaalves/tinyllama-1.1b-chat-v0.
|
20 |
|-----------------------|-------|-------|
|
21 |
-
| Avg. |
|
22 |
-
| ARC (25-shot) |
|
23 |
-
| HellaSwag (10-shot) |
|
24 |
-
| MMLU (5-shot) |
|
25 |
-
| TruthfulQA (0-shot) |
|
|
|
26 |
|
27 |
We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
|
28 |
|
29 |
### Model Details
|
30 |
|
31 |
* **Trained by**: Luiz G A Alves
|
32 |
-
* **Model type:** **tinyllama-1.1b-chat-v0.
|
33 |
* **Language(s)**: English
|
34 |
|
35 |
### How to use:
|
@@ -37,7 +38,7 @@ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/E
|
|
37 |
```python
|
38 |
# Use a pipeline as a high-level helper
|
39 |
>>> from transformers import pipeline
|
40 |
-
>>> pipe = pipeline("text-generation", model="lgaalves/tinyllama-1.1b-chat-v0.
|
41 |
>>> question = "What is a large language model?"
|
42 |
>>> answer = pipe(question)
|
43 |
>>> print(answer[0]['generated_text'])
|
@@ -49,17 +50,17 @@ or, you can load the model direclty using:
|
|
49 |
# Load model directly
|
50 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
|
52 |
-
tokenizer = AutoTokenizer.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.
|
53 |
-
model = AutoModelForCausalLM.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.
|
54 |
```
|
55 |
|
56 |
### Training Dataset
|
57 |
|
58 |
-
`lgaalves/tinyllama-1.1b-chat-v0.
|
59 |
|
60 |
### Training Procedure
|
61 |
|
62 |
-
`lgaalves/tinyllama-1.1b-chat-v0.
|
63 |
|
64 |
|
65 |
# Intended uses, limitations & biases
|
|
|
9 |
|
10 |
|
11 |
|
12 |
+
# tinyllama-1.1b-chat-v0.3_platypus
|
13 |
|
14 |
+
**tinyllama-1.1b-chat-v0.3_platypus** is an instruction fine-tuned model based on the tinyllama transformer architecture.
|
15 |
|
16 |
|
17 |
### Benchmark Metrics
|
18 |
|
19 |
+
| Metric |lgaalves/tinyllama-1.1b-chat-v0.3_platypus | tinyllama-1.1b-chat-v0.3 |
|
20 |
|-----------------------|-------|-------|
|
21 |
+
| Avg. | 37.67 | **38.74** |
|
22 |
+
| ARC (25-shot) | 30.29 | **35.07** |
|
23 |
+
| HellaSwag (10-shot) | 55.12 | **57.7** |
|
24 |
+
| MMLU (5-shot) | **26.13** | 25.53 |
|
25 |
+
| TruthfulQA (0-shot) | **39.15** | 36.67 |
|
26 |
+
|
27 |
|
28 |
We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
|
29 |
|
30 |
### Model Details
|
31 |
|
32 |
* **Trained by**: Luiz G A Alves
|
33 |
+
* **Model type:** **tinyllama-1.1b-chat-v0.3_platypus** is an auto-regressive language model based on the tinyllama transformer architecture.
|
34 |
* **Language(s)**: English
|
35 |
|
36 |
### How to use:
|
|
|
38 |
```python
|
39 |
# Use a pipeline as a high-level helper
|
40 |
>>> from transformers import pipeline
|
41 |
+
>>> pipe = pipeline("text-generation", model="lgaalves/tinyllama-1.1b-chat-v0.3_platypus")
|
42 |
>>> question = "What is a large language model?"
|
43 |
>>> answer = pipe(question)
|
44 |
>>> print(answer[0]['generated_text'])
|
|
|
50 |
# Load model directly
|
51 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
52 |
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.3_platypus")
|
54 |
+
model = AutoModelForCausalLM.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.3_platypus")
|
55 |
```
|
56 |
|
57 |
### Training Dataset
|
58 |
|
59 |
+
`lgaalves/tinyllama-1.1b-chat-v0.3_platypus` trained using STEM and logic based dataset [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
|
60 |
|
61 |
### Training Procedure
|
62 |
|
63 |
+
`lgaalves/tinyllama-1.1b-chat-v0.3_platypus` was instruction fine-tuned using LoRA on 1 V100 GPU on Google Colab. It took about 43 minutes to train it.
|
64 |
|
65 |
|
66 |
# Intended uses, limitations & biases
|