lgaalves commited on
Commit
a201d89
·
1 Parent(s): d0b7ba9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - garage-bAInd/Open-Platypus
5
+ pipeline_tag: text-generation
6
+ language:
7
+ - en
8
+ ---
9
+
10
+
11
+ # mistral-7b_open_platypus
12
+
13
+
14
+ **mistral-7b_open_platypus** is an instruction fine-tuned model based on the Mistral-7B transformer architecture.
15
+
16
+
17
+ ### Benchmark Metrics
18
+
19
+
20
+ | Metric | mistral-7b-platypus | mistralai/Mistral-7B-v0.1 |garage-bAInd/Platypus2-7B|
21
+ |-----------------------|-------|-------|-------|
22
+ | Avg. | - | 62.40 |56.13|
23
+ | ARC (25-shot) | - | 59.98 |55.20|
24
+ | HellaSwag (10-shot) | - | 83.31 |78.84|
25
+ | MMLU (5-shot) | - | 64.16 |49.83|
26
+ | TruthfulQA (0-shot) | - | 42.15 |40.64|
27
+
28
+
29
+ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
30
+
31
+ ### Model Details
32
+
33
+ * **Trained by**: Luiz G A Alves
34
+ * **Model type:** **mistral-7b_open_platypus** is an auto-regressive language model based on the Mistral-7B transformer architecture.
35
+ * **Language(s)**: English
36
+
37
+ ### How to use:
38
+
39
+ ```python
40
+ # Use a pipeline as a high-level helper
41
+ >>> from transformers import pipeline
42
+ >>> pipe = pipeline("text-generation", model="lgaalves/mistral-7b_open_platypus")
43
+ >>> question = "What is a large language model?"
44
+ >>> answer = pipe(question)
45
+ >>> print(answer[0]['generated_text'])
46
+
47
+ ```
48
+
49
+ or, you can load the model direclty using:
50
+
51
+ ```python
52
+ # Load model directly
53
+ from transformers import AutoTokenizer, AutoModelForCausalLM
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained("lgaalves/mistral-7b_open_platypus")
56
+ model = AutoModelForCausalLM.from_pretrained("lgaalves/mistral-7b_open_platypus")
57
+ ```
58
+
59
+ ### Prompt format
60
+
61
+ ```
62
+ "<s>[INST] What is your favourite condiment? [/INST]"
63
+ ```
64
+
65
+ ### Training Dataset
66
+
67
+ `lgaalves/mistral-7b_open_platypus` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
68
+
69
+
70
+ ### Training Procedure
71
+
72
+ `lgaalves/mistral-7b_open_platypus` was instruction fine-tuned using LoRA on 1 Tesla V100-SXM2-16GB. In total, it took 11 hours to fine tune the model.
73
+
74
+
75
+ ### Limitations and bias
76
+
77
+ Mistral 7B and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.