Update README.md
Browse files
README.md
CHANGED
@@ -11,12 +11,12 @@ pipeline_tag: text-generation
|
|
11 |
|
12 |
# gpt2-xl-camel-ai-physics (1.5B)
|
13 |
|
14 |
-
**lgaalves/gpt2-
|
15 |
|
16 |
|
17 |
### Benchmark Metrics
|
18 |
|
19 |
-
| Metric |lgaalves/gpt2-
|
20 |
|-----------------------|-------|-------|
|
21 |
| Avg. | 36.51 | **36.66** |
|
22 |
| ARC (25-shot) | 29.52 | **30.29** |
|
@@ -30,7 +30,7 @@ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/E
|
|
30 |
### Model Details
|
31 |
|
32 |
* **Trained by**: Luiz G A Alves
|
33 |
-
* **Model type:** **lgaalves/gpt2-
|
34 |
* **Language(s)**: English
|
35 |
|
36 |
### How to use:
|
@@ -38,7 +38,7 @@ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/E
|
|
38 |
```python
|
39 |
# Use a pipeline as a high-level helper
|
40 |
>>> from transformers import pipeline
|
41 |
-
>>> pipe = pipeline("text-generation", model="lgaalves/gpt2-
|
42 |
>>> question = "What is a large language model?"
|
43 |
>>> answer = pipe(question)
|
44 |
>>> print(answer[0]['generated_text'])
|
@@ -51,17 +51,17 @@ or, you can load the model direclty using:
|
|
51 |
# Load model directly
|
52 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
53 |
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained("lgaalves/gpt2-
|
55 |
-
model = AutoModelForCausalLM.from_pretrained("lgaalves/gpt2-
|
56 |
```
|
57 |
|
58 |
### Training Dataset
|
59 |
|
60 |
-
`lgaalves/gpt2-
|
61 |
|
62 |
### Training Procedure
|
63 |
|
64 |
-
`lgaalves/gpt2-
|
65 |
|
66 |
|
67 |
# Intended uses, limitations & biases
|
|
|
11 |
|
12 |
# gpt2-xl-camel-ai-physics (1.5B)
|
13 |
|
14 |
+
**lgaalves/gpt2-xl_camel-ai-physics** is an instruction fine-tuned model based on the GPT-2 transformer architecture.
|
15 |
|
16 |
|
17 |
### Benchmark Metrics
|
18 |
|
19 |
+
| Metric |lgaalves/gpt2-xl_camel-ai-physics |gpt2-xl (base) |
|
20 |
|-----------------------|-------|-------|
|
21 |
| Avg. | 36.51 | **36.66** |
|
22 |
| ARC (25-shot) | 29.52 | **30.29** |
|
|
|
30 |
### Model Details
|
31 |
|
32 |
* **Trained by**: Luiz G A Alves
|
33 |
+
* **Model type:** **lgaalves/gpt2-xl_camel-ai-physics** is an auto-regressive language model based on the GPT-2 transformer architecture.
|
34 |
* **Language(s)**: English
|
35 |
|
36 |
### How to use:
|
|
|
38 |
```python
|
39 |
# Use a pipeline as a high-level helper
|
40 |
>>> from transformers import pipeline
|
41 |
+
>>> pipe = pipeline("text-generation", model="lgaalves/gpt2-xl_camel-ai-physics")
|
42 |
>>> question = "What is a large language model?"
|
43 |
>>> answer = pipe(question)
|
44 |
>>> print(answer[0]['generated_text'])
|
|
|
51 |
# Load model directly
|
52 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
53 |
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("lgaalves/gpt2-xl_camel-ai-physics")
|
55 |
+
model = AutoModelForCausalLM.from_pretrained("lgaalves/gpt2-xl_camel-ai-physics")
|
56 |
```
|
57 |
|
58 |
### Training Dataset
|
59 |
|
60 |
+
`lgaalves/gpt2-xl_camel-ai-physics` trained on the GPT4 generated dataset [lgaalves/camel-physics](https://huggingface.co/datasets/lgaalves/camel-physics).
|
61 |
|
62 |
### Training Procedure
|
63 |
|
64 |
+
`lgaalves/gpt2-xl_camel-ai-physics` was instruction fine-tuned using LoRA on 1 Tesla V100-SXM2-16GB. It took about 3 hours to train it.
|
65 |
|
66 |
|
67 |
# Intended uses, limitations & biases
|