--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - FreeSound metrics: - wer model-index: - name: Whisper Tiny En - FreeSound based captions test results: [] --- # Whisper Tiny En - FreeSound based captions test This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the FreeSound Audio dataset. It achieves the following results on the evaluation set: - Loss: 3.8548 - Wer: 98.5500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 5.2273 | 0.6098 | 25 | 4.9782 | 101.4246 | | 4.0984 | 1.2195 | 50 | 4.1433 | 100.8904 | | 3.8301 | 1.8293 | 75 | 3.9157 | 99.3132 | | 3.7081 | 2.4390 | 100 | 3.8548 | 98.5500 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1