--- library_name: peft license: mit base_model: NousResearch/Nous-Capybara-7B-V1 tags: - axolotl - generated_from_trainer model-index: - name: b44efee2-eddd-44eb-8eaa-e887d377ebe1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Capybara-7B-V1 bf16: true chat_template: llama3 datasets: - data_files: - a459406f1318cf04_train_data.json ds_type: json format: custom path: /workspace/input_data/a459406f1318cf04_train_data.json type: field_input: element_score field_instruction: type field_output: prompt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso10/b44efee2-eddd-44eb-8eaa-e887d377ebe1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 4 mlflow_experiment_name: /tmp/a459406f1318cf04_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6d6f3e12-f190-4b24-b9b2-e300fba74ef8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6d6f3e12-f190-4b24-b9b2-e300fba74ef8 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ```

# b44efee2-eddd-44eb-8eaa-e887d377ebe1 This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1](https://huggingface.co./NousResearch/Nous-Capybara-7B-V1) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0005 | 1 | nan | | 0.0 | 0.0026 | 5 | nan | | 0.0 | 0.0052 | 10 | nan | | 0.0 | 0.0078 | 15 | nan | | 0.0 | 0.0104 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1