--- library_name: peft license: apache-2.0 base_model: Artples/L-MChat-7b tags: - axolotl - generated_from_trainer model-index: - name: 0ac3c7b0-08c6-4683-8e10-edce986450b7 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Artples/L-MChat-7b bf16: true chat_template: llama3 datasets: - data_files: - f8bf266a26b04039_train_data.json ds_type: json format: custom path: /workspace/input_data/f8bf266a26b04039_train_data.json type: field_input: '' field_instruction: text1 field_output: text2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: lesso10/0ac3c7b0-08c6-4683-8e10-edce986450b7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 4 mlflow_experiment_name: /tmp/f8bf266a26b04039_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 sequence_len: 1024 special_tokens: pad_token: <|end_of_turn|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 173cf5b8-179d-4676-bf8c-ad3bfaf0c0f3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 173cf5b8-179d-4676-bf8c-ad3bfaf0c0f3 warmup_steps: 5 weight_decay: 0.0 xformers_attention: true ```

# 0ac3c7b0-08c6-4683-8e10-edce986450b7 This model is a fine-tuned version of [Artples/L-MChat-7b](https://huggingface.co./Artples/L-MChat-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0135 | 1 | nan | | 0.0 | 0.0675 | 5 | nan | | 0.0 | 0.1349 | 10 | nan | | 0.0 | 0.2024 | 15 | nan | | 0.0 | 0.2698 | 20 | nan | | 0.0 | 0.3373 | 25 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1