--- library_name: peft license: llama3 base_model: elyza/Llama-3-ELYZA-JP-8B tags: - axolotl - generated_from_trainer model-index: - name: 8b63b470-9990-42b5-922d-8d98388470b0 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: elyza/Llama-3-ELYZA-JP-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cc90a04ba0c3e0ce_train_data.json ds_type: json format: custom path: /workspace/input_data/cc90a04ba0c3e0ce_train_data.json type: field_instruction: text field_output: processed_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: lesso/8b63b470-9990-42b5-922d-8d98388470b0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000203 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_steps: 400 micro_batch_size: 32 mlflow_experiment_name: /tmp/G.O.D/cc90a04ba0c3e0ce_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4c6492b6-3d6d-4f02-a490-0344b920ad62 wandb_project: 03a wandb_run: your_name wandb_runid: 4c6492b6-3d6d-4f02-a490-0344b920ad62 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 8b63b470-9990-42b5-922d-8d98388470b0 This model is a fine-tuned version of [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co./elyza/Llama-3-ELYZA-JP-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000203 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 1.3453 | | 0.2497 | 0.0189 | 50 | 0.1302 | | 0.0646 | 0.0379 | 100 | 0.1377 | | 0.0728 | 0.0568 | 150 | 0.1437 | | 0.1106 | 0.0757 | 200 | 0.3094 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1