File size: 2,092 Bytes
8b1a8ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-135M
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 6feb6698-b746-4d2f-a3bd-6e8636b159c9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# 6feb6698-b746-4d2f-a3bd-6e8636b159c9
This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co./unsloth/SmolLM-135M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0732
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000212
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 50
- training_steps: 274
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0109 | 1 | 1.3905 |
| 1.2152 | 0.5464 | 50 | 1.1606 |
| 1.1693 | 1.0956 | 100 | 1.1256 |
| 1.1159 | 1.6421 | 150 | 1.0956 |
| 1.1005 | 2.1913 | 200 | 1.0760 |
| 1.0462 | 2.7377 | 250 | 1.0732 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |