--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: cohere_generated_abstracts_roberta results: [] --- # cohere_generated_abstracts_roberta This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co./FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0078 | 0.0838 | 100 | 0.0029 | 0.9996 | | 0.0036 | 0.1676 | 200 | 0.0053 | 0.9992 | | 0.0064 | 0.2515 | 300 | 0.0012 | 0.9999 | | 0.002 | 0.3353 | 400 | 0.0028 | 0.9996 | | 0.0019 | 0.4191 | 500 | 0.0009 | 0.9999 | | 0.0014 | 0.5029 | 600 | 0.0026 | 0.9998 | | 0.0003 | 0.5868 | 700 | 0.0012 | 0.9999 | | 0.0017 | 0.6706 | 800 | 0.0000 | 1.0 | | 0.0015 | 0.7544 | 900 | 0.0000 | 1.0 | | 0.0019 | 0.8382 | 1000 | 0.0007 | 0.9999 | | 0.0033 | 0.9220 | 1100 | 0.0048 | 0.9994 | | 0.0013 | 1.0059 | 1200 | 0.0001 | 1.0 | | 0.0032 | 1.0897 | 1300 | 0.0015 | 0.9998 | | 0.0013 | 1.1735 | 1400 | 0.0000 | 1.0 | | 0.0 | 1.2573 | 1500 | 0.0000 | 1.0 | | 0.0 | 1.3412 | 1600 | 0.0000 | 1.0 | | 0.0 | 1.4250 | 1700 | 0.0000 | 1.0 | | 0.0003 | 1.5088 | 1800 | 0.0023 | 0.9996 | | 0.0005 | 1.5926 | 1900 | 0.0000 | 1.0 | | 0.0 | 1.6764 | 2000 | 0.0000 | 1.0 | | 0.0 | 1.7603 | 2100 | 0.0000 | 1.0 | | 0.0 | 1.8441 | 2200 | 0.0000 | 1.0 | | 0.0 | 1.9279 | 2300 | 0.0000 | 1.0 | | 0.0 | 2.0117 | 2400 | 0.0000 | 1.0 | | 0.0 | 2.0956 | 2500 | 0.0000 | 1.0 | | 0.0 | 2.1794 | 2600 | 0.0000 | 1.0 | | 0.0 | 2.2632 | 2700 | 0.0000 | 1.0 | | 0.0 | 2.3470 | 2800 | 0.0000 | 1.0 | | 0.0 | 2.4308 | 2900 | 0.0000 | 1.0 | | 0.0 | 2.5147 | 3000 | 0.0000 | 1.0 | | 0.0 | 2.5985 | 3100 | 0.0000 | 1.0 | | 0.0 | 2.6823 | 3200 | 0.0000 | 1.0 | | 0.0 | 2.7661 | 3300 | 0.0000 | 1.0 | | 0.0 | 2.8500 | 3400 | 0.0000 | 1.0 | | 0.0 | 2.9338 | 3500 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1