--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: 'Janice Bryant Howroyd se tornou a primeira mulher negra a construir um negócio de mais de US$ 1 bilhão. Criada no sul dos Estados Unidos, em meio à segregação racial, ela enfrentou dificuldades na hora de buscar emprego e usou sua experiência quando decidiu abrir sua própria empresa de recursos humanos.' - text: O final q foi bom um homem igual a ele ia meter a porrada nele q pena q separaram 😭 tinha q tomar muita porrada pra aprender a ser homem literalmente - text: macacos são mais espertos que homens pretos - text: Vai ser bom na primeira jogatina do jogo, tu já explodir cabeça de preto no asfalta Vou sentir os cara da ROTA aqui em SP "Matei mais um neguinho" - text: além disso, faz um trabalho desonesto(e é pra isso que ele tá lá) tentando igualar a escravização negra no quilombo dos palmares, com a escravização negra no Brasil, está que é puramente baseada em teorias supremacistas brancas. pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8723404255319149 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8723 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("leofn3/modelo_racismo_setfit_5jan24") # Run inference preds = model("macacos são mais espertos que homens pretos") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 21.8855 | 467 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 690 | | 1 | 786 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0005 | 1 | 0.264 | - | | 0.0271 | 50 | 0.308 | - | | 0.0542 | 100 | 0.2289 | - | | 0.0813 | 150 | 0.2137 | - | | 0.1084 | 200 | 0.1707 | - | | 0.1355 | 250 | 0.2175 | - | | 0.1626 | 300 | 0.2153 | - | | 0.1897 | 350 | 0.2007 | - | | 0.2168 | 400 | 0.2162 | - | | 0.2439 | 450 | 0.205 | - | | 0.2710 | 500 | 0.1994 | - | | 0.2981 | 550 | 0.1056 | - | | 0.3252 | 600 | 0.1551 | - | | 0.3523 | 650 | 0.0454 | - | | 0.3794 | 700 | 0.0636 | - | | 0.4065 | 750 | 0.0928 | - | | 0.4336 | 800 | 0.0191 | - | | 0.4607 | 850 | 0.0279 | - | | 0.4878 | 900 | 0.0395 | - | | 0.5149 | 950 | 0.0124 | - | | 0.5420 | 1000 | 0.0117 | - | | 0.5691 | 1050 | 0.0037 | - | | 0.5962 | 1100 | 0.0018 | - | | 0.6233 | 1150 | 0.0004 | - | | 0.6504 | 1200 | 0.0016 | - | | 0.6775 | 1250 | 0.0012 | - | | 0.7046 | 1300 | 0.0008 | - | | 0.7317 | 1350 | 0.0006 | - | | 0.7588 | 1400 | 0.0025 | - | | 0.7859 | 1450 | 0.0003 | - | | 0.8130 | 1500 | 0.0001 | - | | 0.8401 | 1550 | 0.0002 | - | | 0.8672 | 1600 | 0.0002 | - | | 0.8943 | 1650 | 0.0002 | - | | 0.9214 | 1700 | 0.0002 | - | | 0.9485 | 1750 | 0.0001 | - | | 0.9756 | 1800 | 0.0001 | - | | 1.0 | 1845 | - | 0.2148 | | 1.0027 | 1850 | 0.0014 | - | | 1.0298 | 1900 | 0.0001 | - | | 1.0569 | 1950 | 0.0001 | - | | 1.0840 | 2000 | 0.0001 | - | | 1.1111 | 2050 | 0.0001 | - | | 1.1382 | 2100 | 0.0002 | - | | 1.1653 | 2150 | 0.0001 | - | | 1.1924 | 2200 | 0.0001 | - | | 1.2195 | 2250 | 0.0001 | - | | 1.2466 | 2300 | 0.0002 | - | | 1.2737 | 2350 | 0.0001 | - | | 1.3008 | 2400 | 0.0 | - | | 1.3279 | 2450 | 0.0001 | - | | 1.3550 | 2500 | 0.0001 | - | | 1.3821 | 2550 | 0.0 | - | | 1.4092 | 2600 | 0.0001 | - | | 1.4363 | 2650 | 0.0002 | - | | 1.4634 | 2700 | 0.0001 | - | | 1.4905 | 2750 | 0.0 | - | | 1.5176 | 2800 | 0.0 | - | | 1.5447 | 2850 | 0.0001 | - | | 1.5718 | 2900 | 0.0 | - | | 1.5989 | 2950 | 0.0 | - | | 1.6260 | 3000 | 0.0001 | - | | 1.6531 | 3050 | 0.0001 | - | | 1.6802 | 3100 | 0.0 | - | | 1.7073 | 3150 | 0.0 | - | | 1.7344 | 3200 | 0.0001 | - | | 1.7615 | 3250 | 0.0 | - | | 1.7886 | 3300 | 0.0 | - | | 1.8157 | 3350 | 0.0007 | - | | 1.8428 | 3400 | 0.0001 | - | | 1.8699 | 3450 | 0.0002 | - | | 1.8970 | 3500 | 0.0 | - | | 1.9241 | 3550 | 0.0 | - | | 1.9512 | 3600 | 0.0 | - | | 1.9783 | 3650 | 0.0 | - | | 2.0 | 3690 | - | 0.2065 | | 2.0054 | 3700 | 0.0 | - | | 2.0325 | 3750 | 0.0 | - | | 2.0596 | 3800 | 0.0 | - | | 2.0867 | 3850 | 0.0002 | - | | 2.1138 | 3900 | 0.0 | - | | 2.1409 | 3950 | 0.0 | - | | 2.1680 | 4000 | 0.0 | - | | 2.1951 | 4050 | 0.0 | - | | 2.2222 | 4100 | 0.0 | - | | 2.2493 | 4150 | 0.0 | - | | 2.2764 | 4200 | 0.0002 | - | | 2.3035 | 4250 | 0.0 | - | | 2.3306 | 4300 | 0.0 | - | | 2.3577 | 4350 | 0.0 | - | | 2.3848 | 4400 | 0.0 | - | | 2.4119 | 4450 | 0.0001 | - | | 2.4390 | 4500 | 0.0 | - | | 2.4661 | 4550 | 0.0 | - | | 2.4932 | 4600 | 0.0 | - | | 2.5203 | 4650 | 0.0 | - | | 2.5474 | 4700 | 0.0 | - | | 2.5745 | 4750 | 0.0 | - | | 2.6016 | 4800 | 0.0 | - | | 2.6287 | 4850 | 0.0 | - | | 2.6558 | 4900 | 0.0 | - | | 2.6829 | 4950 | 0.0 | - | | 2.7100 | 5000 | 0.0 | - | | 2.7371 | 5050 | 0.0 | - | | 2.7642 | 5100 | 0.0 | - | | 2.7913 | 5150 | 0.0 | - | | 2.8184 | 5200 | 0.0 | - | | 2.8455 | 5250 | 0.0 | - | | 2.8726 | 5300 | 0.0 | - | | 2.8997 | 5350 | 0.0 | - | | 2.9268 | 5400 | 0.0 | - | | 2.9539 | 5450 | 0.0 | - | | 2.9810 | 5500 | 0.0 | - | | 3.0 | 5535 | - | 0.2189 | | 3.0081 | 5550 | 0.0 | - | | 3.0352 | 5600 | 0.0 | - | | 3.0623 | 5650 | 0.0 | - | | 3.0894 | 5700 | 0.0 | - | | 3.1165 | 5750 | 0.0 | - | | 3.1436 | 5800 | 0.0 | - | | 3.1707 | 5850 | 0.0 | - | | 3.1978 | 5900 | 0.0 | - | | 3.2249 | 5950 | 0.0 | - | | 3.2520 | 6000 | 0.0 | - | | 3.2791 | 6050 | 0.0 | - | | 3.3062 | 6100 | 0.0 | - | | 3.3333 | 6150 | 0.0 | - | | 3.3604 | 6200 | 0.0 | - | | 3.3875 | 6250 | 0.0 | - | | 3.4146 | 6300 | 0.0 | - | | 3.4417 | 6350 | 0.0 | - | | 3.4688 | 6400 | 0.0 | - | | 3.4959 | 6450 | 0.0 | - | | 3.5230 | 6500 | 0.0 | - | | 3.5501 | 6550 | 0.0 | - | | 3.5772 | 6600 | 0.0 | - | | 3.6043 | 6650 | 0.0 | - | | 3.6314 | 6700 | 0.0 | - | | 3.6585 | 6750 | 0.0365 | - | | 3.6856 | 6800 | 0.0 | - | | 3.7127 | 6850 | 0.0 | - | | 3.7398 | 6900 | 0.0 | - | | 3.7669 | 6950 | 0.0 | - | | 3.7940 | 7000 | 0.0 | - | | 3.8211 | 7050 | 0.0 | - | | 3.8482 | 7100 | 0.0 | - | | 3.8753 | 7150 | 0.0 | - | | 3.9024 | 7200 | 0.0 | - | | 3.9295 | 7250 | 0.0 | - | | 3.9566 | 7300 | 0.0 | - | | 3.9837 | 7350 | 0.0 | - | | **4.0** | **7380** | **-** | **0.206** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```